
A Case Study of OpenCL on an Android Mobile
GPU

James A. Ross∗, David A. Richie†, Song J. Park‡, Dale R. Shires‡, and Lori L. Pollock§
∗Engility Corporation, Chantilly, VA

james.ross@engilitycorp.com
†Brown Deer Technology, Forest Hill, MD

drichie@browndeertechnology.com
‡U.S. Army Research Laboratory, APG, MD
{song.j.park.civ,dale.r.shires.civ}@mail.mil
§University of Delaware, Newark, DE

pollock@cis.udel.edu

Abstract—An observation in supercomputing in the past
decade illustrates the transition of pervasive commodity products
being integrated with the world’s fastest system. Given today’s
exploding popularity of mobile devices, we investigate the possi-
bilities for high performance mobile computing. Because parallel
processing on mobile devices will be the key element in developing
a mobile and computationally powerful system, this study was
designed to assess the computational capability of a GPU on
a low-power, ARM-based mobile device. The methodology for
executing computationally intensive benchmarks on a handheld
mobile GPU is presented, including the practical aspects of
working with the existing Android-based software stack and
leveraging the OpenCL-based parallel programming model. The
empirical results provide the performance of an OpenCL N-
body benchmark and an auto-tuning kernel parameterization
strategy. The achieved computational performance of the low-
power mobile Adreno GPU is compared with a quad-core ARM,
an x86 Intel processor, and a discrete AMD GPU.

Keywords-handheld GPU; OpenCL; Android; N-body;

I. INTRODUCTION

Mobile graphics processing units (GPUs) paired with ARM
processors on low-power system-on-a-chip (SoC) devices have
been available for several years in smartphones and tablets.
Despite widespread adoption and deployment of discrete
GPUs as accelerators, there remains no clear path for pro-
gramming heterogeneous systems with co-processors. The
development of application programming interfaces (APIs)
and programming methodologies for mixed architectures are a
topic of active research and development. A major challenge
is the lack of availability and maturity in software technolo-
gies that should, in principle, allow for programmability and
efficiency across the coupled disparate cores in these devices.

Handheld mobile GPU architectures now possess general-
purpose compute capabilities and a software stack sufficient to
begin exploring these devices as computational accelerators.
This development in the technology mirrors that of desk-
top, workstation, and large-scale high performance comput-
ing (HPC) platforms where GPUs are increasingly used to
offload parallel algorithms for improved application perfor-
mance. Leveraging the compute capability of modern mobile

GPUs through Android platforms may allow computationally
demanding applications to achieve higher performance. How-
ever, the programmability of these heterogeneous systems for
effective HPC remains an open question.

The main contributions of this paper are the following:

• A case study in porting an OpenCL parallel benchmark
to the mobile GPU on an Android device using a higher-
level programming API that leverages OpenCL.

• Empirical results from tuning an OpenCL N-body bench-
mark on a Qualcomm Adreno 320 mobile GPU in com-
parison to other common architectures.

• An evaluation of mobile Android platforms directed to-
wards gathering an initial picture of the GPU capability
in terms of architecture, hardware features, usability, and
performance.

II. MOTIVATION

Processing technologies continue to decrease in size, thus
increasing the mobility of compute resources. The history of
computing suggests that computational power trickles down
from stationary systems to mobile devices. As a case in
point, consider modern smartphones that now rival past super-
computer performance. Many individuals are walking around
with compute-capable devices, which provides mobility of
sophisticated computing.

With the end of the frequency scaling single-core era [1],
[2], parallel computing technologies are ubiquitous and can be
found across a wide range of devices such as smartphones,
laptops, and supercomputers. The economics of computing
and market forces favor low-cost, high-volume, and general-
purpose processors rather than slowly evolving, performance-
centric, specialized products [3], [4]. The rise of clusters using
commodity personal computers is an example of how the
popularity of the everyday PC transformed the supercomputing
community. Modern GPUs appear to satisfy this economic
observation where video cards are reasonably priced, widely
available, and support general-purpose computing. An execu-
tion of floating-point intensive simulation on a low-power em-

U.S. Government work not protected by U.S. copyright



bedded GPU technology provides a comparative performance
case study for potential future-generation HPC systems.

Dedicated or distributed computing over mobile devices,
which are becoming increasingly heterogeneous, is an area
that pushes this idea of high performance computing to the
edge. Indeed, the U.S. military has seized on this trend
and has recently approved Android phones for Soldiers [5].
Limited data sharing over ad hoc networks, or specialized
mobile devices with larger data storage, may alleviate memory
storage problems for high resolution databases, but comput-
ing efficiency and required time-to-solution remains an issue
when high performance servers are not available to handle
processing requests. In these situations when mobile devices
have to do the heavy lifting in processing, understanding
and optimizing efficiency of mobile GPU technology can
be critical. This is true for the military and first responders
where timely situational awareness is key in avoiding risk
in dynamic environments where decisions have to be made
rapidly. For example, this might involve optimized way-point
planning for entry to or exit from a hostile environment. Line-
of-sight (LOS) types of applications will also be paramount
in determining threats from explosives or hostile forces. Haz-
ardous chemical leaks into the air will also require extensive
processing to determine dispersion based on active weather
patterns in the area. In all of these applications, mobile
processing can assist as a vital computational resource.

III. MOBILE GPUS FOR GENERAL-PURPOSE
COMPUTATION

Due to very tight restrictions on energy consumption,
mobile devices are not generally used for computationally
intensive calculations. The theoretical throughput of mobile
ARM processors remains a staggering two orders of magnitude
lower than workstation CPUs, although this gap is generally
decreasing. Peak FLOPS for ARM Cortex processors are
reported in [6] and GFLOPS for Xeon E5-4600 processors
are provided in [7]. Mobile GPUs can be used to improve
interactivity where previous calculations could not be com-
puted within interactive time frames. The performance data
presented here will illuminate that the computational through-
put of a mobile GPU goes further in closing the gap in mobile
device performance as compared to modern x86 desktops or
workstations.

OpenCL provides an industry standard for parallel pro-
gramming of heterogeneous computing platforms [8], and is
designed to meet the requirements of exposing the compute ca-
pability of devices such an ARM SoC with a general-purpose
GPU. Despite announcements suggesting OpenCL support for
mobile ARM devices, as well as public demonstrations at
trade shows, vendor support of an OpenCL implementation
has been non-existent until very recently. This has changed
with the most recent mobile GPUs, namely, the ARM4 Mali-
T604 and Qualcomm Adreno 320, both typically found inte-
grated with an ARM Cortex-A15 CPU. The availability of an
OpenCL implementation for both GPUs has been confirmed
and can be found on consumer products using these devices.

This recent development provides a significant opportunity to
finally benchmark these devices for computationally expen-
sive applications using OpenCL. Notwithstanding this positive
development, the overall software stack and support remains
relatively complicated and immature.

Programming with OpenCL on mobile GPUs poses multiple
challenges due to several limitations. The Android operating
system and software stack are an obstacle for accessing mobile
GPU performance with vendor-supplied OpenCL implemen-
tations. Since OpenCL is a C-based library, the developer
must utilize the Android Native Development Kit (NDK) to
cross-compile the native executable. For general-purpose GPU
(GPGPU) computation, Google recommends RenderScript,
which is a Java-based API primarily used for supplemental
graphics effects within an Android App. However, using
OpenCL allows the application developer to leverage an ex-
isting GPU code rather than porting code to RenderScript. To
the best of our knowledge, only a few people have executed
OpenCL code on a mobile GPU under Android, as evident in
notably few related publications [9], [10].

As in the desktop computing environment, there are multi-
ple vendors with GPU architectures available for integration
into low power SoCs. The most notable examples are the
Qualcomm Adreno, the ARM Mali, the NVIDIA GeForce
ULP, Vivante’s ScalarMorphic architecture, and the Imagina-
tion Technologies PowerVR architectures. Each of these GPU
architectures has been used in a number of mobile Android
products, but presently only Adreno and Mali appear to have
conformant OpenCL implementations available for current
hardware in consumer products.

Qualcomm has shipped an OpenCL implementation with
new phones that contain the Adreno 320 GPU. The Qualcomm
Snapdragon S4 Pro APQ8064i SoC is in the LG Nexus 4
mobile smartphone. The Snapdragon SoC contains a 1.5 GHz
quad-core Krait ARM CPU and Adreno 320 GPU. While
hardware details about the Adreno 320 GPU are sparse,
existence of the OpenCL library is sufficient to access and
benchmark the capabilities of the device.

IV. AUTO-TUNING OPENCL N-BODY BENCHMARK

N-body is an algorithm used to solve Newton’s laws of
motion for N particles subject to an inter-particle force. The
basic algorithm requires the update of all particle positions
and velocities based on the distance of a given particle to
all others. The update is performed by calculating a distance-
dependent force and then numerically integrating the equations
of motion using a fixed time-step. The algorithm consists of a
double loop over all particles, a distance calculation between
all particle pairs, and the accumulation of forces acting on
each particle.

The N-body algorithm provides an excellent benchmark for
the evaluation of a computing platform for several reasons.
First, the basic algorithm is representative of many real-
world computational kernels such as astrophysics, molecular
dynamics, plasma physics, and protein folding [11], [12],
hence may serve as a proxy for their expected performance.



Second, the manner in which the simulation is performed is
relatively clean without superfluous computations that would
complicate the interpretation of the performance benchmarks.
Third, the algorithm provides a simple mechanism of sweeping
a single parameter, the number of particles, to drive the
system into compute bound regimes since computation and
data movement scale as O(N2) and O(N), respectively. This
is critical when studying co-processor architectures since it is
widely observed that the cost of data transfer can overtake
the benefit of additional co-processing compute capability
in a given computational problem. Finally, the simulation
is commonly implemented on a range of architectures and
provides a convenient canonical algorithm for comparative
benchmarking.

In this investigation, we use an in-house auto-tuning
OpenCL N-body code (which we call the N-body benchmark)
that parameterizes the kernel in ways that impact performance
across different architectures and compilers. The host code
uses the STDCL API (see Section V-A) that simplifies the use
of OpenCL for HPC applications. The auto-tuning capability
of the benchmark may be used to optimize performance on a
given architecture by specifying ranges for parameter sweeps,
allowing the code to test many parameter combinations and
record the resulting performance.

The kernel is parameterized by the following parameters.
The parameter nmulti is the number of particles updated
per thread. The outer-loop multiplicity allows a compiler
to automatically vectorize the computation. The parameter
nunroll defines the explicit unrolling within the inner loop over
particle pair interactions. The parameter nblock is the number
of particle positions cooperatively cached by a work-group
in local memory for calculating particle pair interactions.
This essentially replaces the inner loop over particles with
a double loop over blocks of nblock particles and a nested
loop over the cached particle positions. The parameter nthread
determines the OpenCL work-group size. Additionally, there
is a Boolean parameter fma that enables the use of the built-
in fused multiply-add. A partial code listing of the kernel
generation scheme based on some of the parameters appears
in Fig. 1 and makes heavy use of pre-processing.

Within the context of computing on GPUs, an increase
in any of these parameters generally increases the register
and local memory usage, which does not necessarily harm
performance. Increasing the number of registers and local
memory does, however, begin to indirectly limit the number of
thread teams (“wavefronts” in AMD terminology or “warps”
in NVIDIA terminology) that can execute concurrently on a
GPU compute unit. This limits the total number of threads in
flight, which decreases the GPU’s capability to hide memory
latencies and hence can cause performance degradation. Since
the register usage is determined by the OpenCL JIT compiler
and not the programmer, the programmer cannot possibly
know a priori which kernel parameter configuration will result
in the highest number of thread teams in flight while fully
utilizing the hardware. Since mobile GPU architecture details
are limited and evolving so rapidly, parameterized auto-tuning

#pragma for I,0,NMULTI-1
T4 p@I@ = pbuf[NMULTI*get_global_id(0) + @I@];
T4 a@I@ = (T4)(0.0,0.0,0.0,0.0);
#pragma endfor
for(uint i = 0; i < n; i += NMULTI) {

T4 p,dp;
T inv;

#pragma for J,0,NMULTI-1
p = pbuf[i+@J@];

#pragma for I,0,NUNROLL-1
dp = p - p@I@;
invr = rsqrt(

FMA(dp.x,dp.x,
FMA(dp.y,dp.y,

FMA(dp.z,dp.z,eps))));
a@I@ = FMA(p.w,invr*invr*invr*dp,a@I@);

#pragma endfor
#pragma endfor
}

Fig. 1. In this kernel snippet example, the code is doubly unrolled by
the pre-processor definitions NMULTI and NBLOCK. FMA is a macro that
either uses the built-in fused multiply-add routine or basic math operations,
while T and T4 are the data type and vector data type, respectively. Our pre-
processor replaces the @I@ and @J@ values directly with the loop index
inside #pragma for statements. This pre-processor code generation scheme
improves upon other OpenCL kernel string generation schemes by making
the code more readable.

OpenCL kernels may serve as an effective means to achieve
high performance across devices and evolving software stacks
as long as care is taken to validate correct operation for
arbitrary parameter values.

V. PROGRAMMING MOBILE GPUS ON ANDROID
PLATFORMS

A. OpenCL-based Software Stack

Although OpenCL is commonly viewed as a GPU pro-
gramming language, its applicability is more general and
specifically includes multi-core CPUs. OpenCL provides a
portable vendor- and device-independent API for targeting
parallel processors. OpenCL is an explicit API that enables
precise coding of host-side scheduling, data movement, and
algorithm implementation for compute devices.

One drawback of OpenCL is that the API is better suited
as a lower-level middleware layer than an API for HPC
application development. In comparison to its closest vendor
supported competitor, CUDA, the direct use of OpenCL is
significantly more tedious and complicated. The strength of
OpenCL is in its portability as a compute device API and
not in its syntax or semantics for HPC application developers.
The introduction of OpenCL into a large HPC code can make
long-term development and maintenance more difficult.

To mitigate the complexity of host-side application pro-
gramming with OpenCL (API 1.1), STDCL (STandarD Com-
pute Layer) (version 1.5) was used in this work. STDCL is
a simplified programming API [13] that supports OpenCL
with higher abstraction application development. Note that
the concepts behind STDCL is not simply to provide a
wrapper for OpenCL calls. STDCL supports default compute
contexts, conventional memory allocation of device-sharable



memory, OpenCL-based event management, and a dynamic
kernel loader (reflecting a more traditional compilation model
and an offline kernel compiler [clcc]).

This case study depended on extensive use of the CO-
PRocessing THReads (COPRTHR) SDK developed by Brown
Deer Technology that is freely available under an open-
source license (LGPLv3) [14]. The COPRTHR SDK provides
libraries and tools that leverage OpenCL for portability and
supports the development of applications that exploit the multi-
threaded parallelism of modern multi-core and many-core
processors. STDCL, mentioned previously, is a predominate
component of COPRTHR. The portability of the SDK is
limited only by the availability of a suitable OpenCL imple-
mentation, and includes support for processors from AMD,
Intel, and NVIDIA. Furthermore, the ability to build the
SDK from source allows portability to new or experimental
platforms.

B. OpenCL-based Program on an Android Device

The C libraries required to support OpenCL-based code
are presently inaccessible directly from the Android SDK,
and instead require the use of the Android NDK. The NDK
workflow is based on the use of cross-compilation techniques
and requires the device to be paired with a workstation
running Linux on which the actual software development will
take place. Compiling software using the Android NDK is
complicated, and required resolving numerous issues including
missing libraries and functionality in the Android operating
system as compared with a standard Linux distribution.

The NDK (release 8e in this work) does not include an
OpenCL library or implementation. In order to cross-compile
an application that links to the OpenCL library, one must copy
the library (libOpenCL.so) from the target device to the host
machine performing the cross-compilation link. Resolving all
issues with the Android NDK provided the ability to cross-
compile the COPRTHR SDK from source and then cross-
compile the auto-tuning N-body benchmark code that relies
upon the SDK.

Development process proved that executing native applica-
tions under Android is complicated, cumbersome, and ineffi-
cient when compared to a conventional software development
and testing workflow. The process requires using either an
Android App to kickstart the binary or running the binary over
an SSH-like shell called ADB Shell. Alternatively, Android
Terminal is an application available from the Google Play
Store that gives the user a terminal with access to the file
system and limited set of UNIX commands. However, Android
Terminal cannot generally execute binaries anywhere within
the file system due to Android permission policies, whereby
a virtual user is associated with each Android application,
constraining execution to within the application’s dedicated
directory. In this case, the Android Terminal application only
has permission to run binaries under its own directory. Fur-
thermore, application directories are usually hidden and the
paths are unknown.

Fortunately, Android Terminal openly published their appli-
cation directory. Using the Android Terminal, one can change
directory to this location and use the UNIX “cat” command to
create a copy of the binary program file (directly copying does
not work due to permission issues). Finally, the permissions
of the newly created file can be changed to 755, designating
it as an executable. This recipe is complicated and clearly not
designed to allow the easy execution of user binaries, but it
nevertheless provides a work-around.

Another strategy uses the ADB Shell to create a directory
under /data/local/, runs “adb push [filename]” to copy the
executable program to that directory, and changes permissions
to 6755 to make the binary executable. Subsequently, the
program can be executed as normal under the ADB shell.

VI. EVALUATION STUDY

A. Methodology

The Android NDK cross-compiling environment (Ubuntu
12.10 x86, 64-bit, and gcc 4.7) was used to compile the
COPRTHR SDK and the OpenCL N-body benchmark code
for the Adreno 320 mobile GPU on the Nexus 4 smartphone.
The benchmark was then used to empirically measure the
performance of the mobile GPU. The auto-tuning of the N-
body benchmark adjusted parameters for the target architec-
ture. Performance measurements were collected for a range of
values of the number of particles in the simulation. Sweeping
this value allows the benchmark to be systematically driven
into a compute-bound regime. Performance from the auto-
tuning benchmark is compared with that of the default kernel
tuned for high-end discrete GPUs. The overall results are
compared to similar empirical measurements for selected CPU
and discrete GPU processor architectures.

B. Results

Fig. 2 depicts the results of the performance measurement
on the Adreno 320 mobile GPU using the OpenCL N-body
benchmark. The number of particles in the simulation was
increased from 512 to 8,192. Auto-tuning parameters for
simulations greater than 4,096 had to be manually set due to
failure at slower configurations (most likely a watchdog timer
issue with the platform).

Running simulations using more than 8,192 particles failed
to execute properly. This type of limitation could be the result
of a real constraint of the architecture or an artificial constraint
such as a watchdog timer preventing the device from executing
a compute kernel beyond a certain amount of a time. A similar
artificial constraint has been observed on NVIDIA discrete
GPUs used concurrently to drive a display in order to maintain
interactivity [15].

The performance as a function of the number of particles
shows that the simulation is driven into a compute-bound
regime at around 4,096 particles. The lower number of parti-
cles shows a decrease in the measured performance indicating
that other factors, such as latency and data movement costs, are
impacting the results, whereas using more particles shows no
significant increase in performance. This general behavior has



Fig. 2. Performance of an OpenCL N-body benchmark for a range of particle
system sizes on an Adreno 320 mobile GPU of an Android smartphone. The
simulation is driven into a compute-bound regime at around 4,096 particles,
beyond which increasing the number of particles in the simulation shows
negligible increase in measured performance.

been observed for all processor architectures tested including
discrete GPUs and CPUs, and is a general characteristic of
the algorithm itself. The peak measured performance for the
Adreno 320 is found to be approximately 15.2 GFLOPS with
8,192 particles.

Fig. 3 compares the measured performance of Adreno GPU
to ARM, Xeon CPU, and AMD GPU. All implementations
are parallelized for optimal utilization of the processing units.
Xeon CPU result is based on using both the Xeon CPUs in
a dual socket, reflecting the performance of combined CPU
chips. The difference in performance between Adreno 320 and
two hexa-core Xeon was 6.1x for the autotuned comparison.
Considering that Qualcomm Adreno is powered by a battery,
observed computational performance is admirable.

Although the LG Nexus 4 OpenCL implementation reported
an ARM CPU back end, OpenCL kernels failed to execute
properly on the device. Another ARM-based platform with a
valid OpenCL implementation is reported here for comparison
[16]. The illustration of results consists of the default OpenCL
kernel, originally tuned for a high-end AMD Cypress GPU,
as well as the peak performance found with the auto-tuning
benchmark presenting the effect of tuning OpenCL kernel
parameters. When comparing Cortex-A9 versus Adreno 320
inside the smartphone, an order magnitude higher value is
evidenced by the Qualcomm mobile GPU.

C. Analysis and Discussion

At the time of this work, the theoretical throughput and ther-
mal design power (TDP) of the Adreno 320 were unknown,
as well as many other details about the processor architec-
ture itself. Publicly available information remains sparse on
this architecture design. A reasonable estimate based on the
observed performance and the constraints of the platform in
which the device is integrated suggests that these metrics are
on the order of a few tens of GFLOPS in theoretical peak
performance and a few watts for the TDP. Without precise data
from the manufacturer, devising an accurate power efficiency
in comparison to other relevant processor architectures is
challenging due to the difficulty in identifying the correct pins
to probe for the Qualcomm Adreno 320 chip.

Fig. 3. Performance results for the standard and auto-tuned N-body algorithm
executed on all cores of a quad-core ARM Cortex A9 (1.1-1.4 GHz), the
Qualcomm Adreno 320 mobile GPU, dual Intel Xeon X5650 (twelve x86
cores at 2.67 GHz), and the AMD Radeon HD 6970 GPU (Cayman). The
performance in parentheses is the improvement in performance of the auto-
tuning benchmark compared to the default kernel. The performance is calcu-
lated using a standard measure of 20 floating-point operations per particle-
particle interaction, which includes square root and division operations known
on many architectures to require more cycles than a multiply-add.

Considering that Adreno 320 is packaged inside a mobile
phone, the embedded GPU displayed a commanding N-body
performance. Comparing Adreno to Intel Xeon, the power
consumption is drastically different between a battery-powered
device and a wall-plugged workstation. Yet, dual Intel Xeon
X5650 reached 89.8 GFLOPS and Adreno was observed
achieving 14.7 GFLOPS. It should be noted that the measured
Xeon GFLOPS number is for two Xeon X5650 processors,
because of the dual CPU socket configuration in the test bed
workstation. The N-body results show that the Nexus 4 mobile
devices that many of us carry are beginning to approach the
single-precision floating-point capabilities of the Xeon X5650.

Based on the results of the two OpenCL applications
under Android, some broad generalizations can be derived
about the Qualcomm Adreno 320 and underlying OpenCL
implementation. The implementation appears to be relatively
immature as exhibited by the stability issues, compiled kernel
performance variation, and kernel compiler speed. However,
these kinds of issues have appeared on other OpenCL plat-
forms in the past and have generally improved with time as
the software matures. As the hardware advances and OpenCL
implementations appear, software developers will leverage the
OpenCL capabilities on smartphones and the new competition
between vendors will pave the way to improvements in the
software stack.

VII. RELATED WORK

Several research studies have been conducted on using mo-
bile handheld devices for general-purpose computation [17],
[18], [19], [20]; however, our work is distinguished by ex-
ecuting an OpenCL framework that extends to diverse het-
erogeneous resources. Accordingly, a single code base was
compared to various computing elements consisting of an
ARM, X86, and discrete GPU architectures.



The Mont-Blanc project is an European initiative to build
HPC from mobile phone processors [21]. Stanisic et al. present
performance evaluation on low-power embedded platforms to
address energy-efficiency in reaching exascale computing. An
experimental HPC cluster named Tibidabo was constructed
with NVIDIA Tegra2 chips [22]; however, CUDA or OpenCL
is not supported on the GPU in Tegra2. The Mont-Blanc
project argues for the potential of embedded devices in future
HPC systems. Albeit single device, our research adopted the
broader view of OpenCL framework and employed STDCL
abstraction.

Additionally, an auto-tuning method of parameterized kernel
to identify an optimal kernel was applied for our case study. In
comparative performance studies between CUDA and OpenCL
versions of the same applications, Fang et al. [23] and Komatsu
et al. [24] state that performance can be comparable if the
kernels are optimized by hand or by compiler optimizations.
They also concluded that automatic parameter tuning is es-
sential to enable a single OpenCL code to run efficiently on
various GPUs, motivating the need for auto-tuning for each
system and comparative performance studies. Yao et al. [25]
studied the performance portability of OpenCL across diverse
architectures including NVIDIA GPU, Intel Ivy Bridge CPU,
and AMD Fusion APU, using three OpenCL benchmarks
— SGEMM, SpMV, and FFT. They found that performance
portability requires tuning threads-data mapping, data layout,
tiling size, data caching, and operation-specific factors. Our
parameterized kernel approach starts to address the challenges
of performance portability.

VIII. CONCLUSIONS AND FUTURE WORK

This case study demonstrated a promising approach to port
an OpenCL-based software stack to an Android platform by
compiling and executing a representative benchmark for com-
putationally expensive scientific applications for an Adreno
320 mobile GPU on a Nexus 4 smartphone. Empirical per-
formance measurements for an auto-tuning OpenCL N-body
benchmark portrayed that the smartphone embedded GPU
reached 15.2 GFLOPS in a compute-bound regime, which
can be on par with Intel desktop processors. The investigation
revealed that the use of the mobile GPU showed some limita-
tions with large simulations or using certain kernel parameters,
hence technical challenges exist in using the device for HPC
tasks. Nevertheless, the results show a competitive edge for
offloading computationally intensive tasks to a mobile GPU
when compared to the capabilities of an ARM processor.

Further work is necessary to identify methods for collecting
accurate measurements of power consumption in smartphones
for power efficiency analysis. Tightly packaged construction
of mobile phones makes Adreno GPU isolation a challenge.

REFERENCES

[1] H. Sutter, “The free lunch is over: A fundamental turn toward concur-
rency in software,” Dr. Dobbs Journal, vol. 30, no. 3, pp. 202–210,
2005.

[2] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue,
vol. 3, no. 7, pp. 26–29, Sep. 2005.

[3] R. Vuduc and K. Czechowski, “What GPU computing means for high-
end systems,” Micro, IEEE, vol. 31, no. 4, pp. 74–78, 2011.

[4] G. Bell, “Bell’s law for the birth and death of computer classes,”
Commun. ACM, vol. 51, no. 1, pp. 86–94, Jan. 2008.

[5] (2013, May) U. S. military approves Android phones for soldiers.
[Online]. Available: http://www.bbc.co.uk/news/technology-22395602

[6] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with commodity CPUs: Are mobile SoCs
ready for HPC?” in Proceedings of SC13: International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. New York, NY, USA: ACM, 2013, pp. 40:1–40:12.

[7] “Intel xeon processor E5-4600 series,” http://download.intel.com/
support/processors/xeon/sb/xeon E5-4600.pdf, May 2012.

[8] OpenCL The open standard for parallel programming of heterogeneous
systems, Khronos Group Std., 2009.

[9] (2013, January) OpenCL reveals Kindle Fire’s true
potential. [Online]. Available: http://gearburn.com/2013/01/
opencl-reveals-kindle-fires-true-potential/

[10] G. Wang, Y. Xiong, J. Yun, and J. Cavallaro, “Accelerating computer
vision algorithms using OpenCL framework on the mobile GPU - a
case study,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, May 2013, pp. 2629–2633.

[11] G. Blelloch and G. Narlikar, “A practical comparison of n-body algo-
rithms,” in Parallel Algorithms, ser. Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1997.

[12] L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation with CUDA,”
GPU gems, vol. 3, pp. 677–695, 2007.

[13] STDCL Reference Manual, www.browndeertechnology.com/docs/
stdcl-reference-rev1.4.html, Brown Deer Technology, 2012, revision
1.4.

[14] “COPRTHR SDK,” www.browndeertechnology.com/coprthr.htm, 2012.
[15] “NVIDIA CUDA toolkit v5.0 release notes errata,” October 2012.
[16] D. Richie, J. Ross, J. Ruloff, S. Park, L. Pollock, and D. Shires,

“Investigation of parallel programmability and performance of a Calxeda
ARM server using OpenCL,” in The Sixth Workshop on Unconventional
High Performance Computing 2013 (UCHPC 2013). IEEE, Aug 2013.

[17] N. Singhal, I. K. Park, and S. Cho, “Implementation and optimization of
image processing algorithms on handheld GPU,” in Image Processing
(ICIP), 2010 17th IEEE International Conference on, Sept 2010, pp.
4481–4484.

[18] K.-T. Cheng and Y.-C. Wang, “Using mobile GPU for general-purpose
computing - a case study of face recognition on smartphones,” in
VLSI Design, Automation and Test (VLSI-DAT), 2011 International
Symposium on, April 2011, pp. 1–4.

[19] M. Bordallo Lpez, H. Nyknen, J. Hannuksela, O. Silvn, and M. Vehvili-
nen, “Accelerating image recognition on mobile devices using GPGPU,”
pp. 78 720R–78 720R–10, 2011.

[20] B. Rister, G. Wang, M. Wu, and J. Cavallaro, “A fast and efficient
sift detector using the mobile GPU,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, May
2013, pp. 2674–2678.

[21] L. Stanisic, B. Videau, J. Cronsioe, A. Degomme, V. Marangozova-
Martin, A. Legrand, and J.-F. Mehaut, “Performance analysis of HPC
applications on low-power embedded platforms,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, 2013, pp. 475–480.

[22] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
“Tibidabo: Making the case for an ARM-based HPC system,” Future
Generation Computer Systems, vol. 36, no. 0, pp. 322 – 334, 2013.

[23] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance
comparison of CUDA and OpenCL,” in Proceedings of the 2011 Inter-
national Conference on Parallel Processing, ser. ICPP ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 216–225.

[24] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and
H. Kobayashi, “Evaluating performance and portability of OpenCL pro-
grams,” in The Fifth International Workshop on Automatic Performance
Tuning, June 2010.

[25] M. S. I. Yao Zhang and A. A. Chien, “Improving performance portability
in OpenCL programs,” 2013.


