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Abstract—Fluorescence Recovery After Photobleaching
(FRAP) is a commonly used technique for quantifying the
movement of small biological systems. To aid in the evaluation
of experimentally produced data, we used the parallel processing
power offered by Graphics Processing Units (GPUs) to accelerate
a computational simulation of the process. We find that the
parallel process is significantly faster when implemented on the
GPU, and that further speed increases can be accomplished via
various optimizations, bringing the speed increase up to a factor
of one hundred in some cases.

Index Terms—CUDA, GPU, FRAP, parallel computing

I. INTRODUCTION

The generation and maintenance of cellular polarization
impacts an array of biological systems in plants, animals,
and fungi. Some examples of the significance of cell polar-
ity include: the establishment of morphogenetic gradients in
animals [1] and plants [2], asymmetric cell division [3], axonal
outgrowth [4], the immunological synapse [5], yeast budding
[6], fungal hyphae invasion [7], pollen tube growth [8], root
hair development [9], and moss protonemal cell development
[10]. Since the endomembrane trafficking system and the plant
cytoskeleton are involved in cellular polarization it is essential
to characterize the dynamic interactions of these two systems.

To date, there are a handful of techniques that can be used
to study protein dynamics in vivo. These include fluorescence
correlation spectroscopy (FCS), single-particle tracking, and
fluorescence recovery after photobleaching (FRAP) [11]-[15].
The most commonly used technique among the three is FRAP;
this is because single particle tracking will not work at high
probe concentrations and FCS requires very fast scanning
rates. The FRAP experiments are based on a process called
photobleaching [16]. Photobleaching occurs when exposure to
high intensity light causes a fluorescent molecule to lose its
fluorescence. During FRAP, a molecular species of interest
is fluorescently labeled and monitored within a region of
interest inside the cell. This region is then subjected to a high
intensity laser pulse that locally abrogates the fluorescence
within that region. Following this pulse, unbleached molecules
move into the region of interest, causing an increase in average
local fluorescence. This rate of increase is directly related
to the mobility of the fluorescently labeled species and can
be extended to quantify the diffusion coefficients and binding
rates of proteins associated with cell polarization [16].

Due to the importance of cell polarized growth and the
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popularity of FRAP, there has been an increased need for
fast and accurate quantification of FRAP results. Often these
results are in physical geometries that are impractical to
analyze analytically. To that aim, we have created a three-
dimensional FRAP simulation for polarized cell growth in
moss, Physcomitrella patens, an excellent model organism
in which to study the dynamics of the cytoskeleton and
endomembrane system during polarized growth [17], [18]. As
previous fluid simulation techniques have been shown to have
a dramatic speed improvement when implemented on GPUs
using Nvidia’s Compute Unified Device Architecture(CUDA)
[19], FRAP simulations were implemented using CUDA as
well.

II. ALGORITHM

Our model simulates a set of fluorescent particles in a
Brownian fluid. We can apply photobleaching and imaging
events at any time during this simulation. Typically there
are two types of simulations used: direct imitation of time-
series data and higher resolution 3D imaging. In the first, we
limit ourselves to taking images with the same limitations as
a microscope: a finite image acquisition time, a maximum
frame rate, and that photobleaching cannot happen during
imaging. This generates a time-series of images that directly
corresponds to a physical experiment and can be used for
quantitative comparison. In the second, we ignore physical
limitations and image a “z-stack™: a set of image slices that
together provide a full 3D image of the system. This is
done with instantaneous image acquisition and a high frame
rate, which does not correspond to a physical process, but
allows us to visualize the three-dimensional behavior of the
photobleaching and recovery processes in a way not possible
using a physical microscope.

A. Brownian Fluid

In order to simulate the behavior of a set of fluorescent
particles, we treat them as being embedded in a simple
Brownian fluid described by a single diffusion coefficient. This
diffusion coefficient, D, is given by the Einstein relation
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with temperature, 7', and Boltzmann constant, k. Assuming
spherical particles with radius R, the friction coefficient ( is
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for viscosity 7. The fluid is assumed to have a very low
Reynolds number, which means that the particles do not
experience inertial effects. This lack of inertia means that the
Stokes equation applies, i.e.
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where &;(t) is the component of random noise with the
properties
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To mimic the geometry of a growing moss tip, we imposed
boundary conditions constraining the fluid to a hemisphere-
capped cylinder. When a particle hits one of the boundaries, it
is reflected elastically. The boundary check is repeated in the
event that a particle collides with a boundary more than once
in a single time step.

B. Computational Imaging

Fluorescence imaging relies on exciting a fluorescent object
with light at one wavelength, and then imaging the light that it
emits at a different wavelength. In a confocal microscope, both
illumination and imaging are done through the same objective
optics by scanning a laser beam. This means that only a single
point can be imaged at a time, improving resolving power, but
forcing the microscope to raster across the entire image.

We model the lens optics of the microscope as producing
a Gaussian beam that depends on the wavelength, A, and the
numerical aperture, NA, of the microscope.

To render microscope output images, it is assumed that the
intensity of the light emitted by a particle is linear with the
intensity of the excitation light it experiences. This means that
the intensity at a point R, I(R), is the sum of the contributions
from each particle at point P, each of which is a product of
the intensity the point experiences from the excitation beam
and the intensity the microscope sees from the point:

N
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Here, we use the fact that the Gaussian beam intensity is an
even function.

The physical microscope rasters across lines over a finite
period of time. This process is imitated by rendering one line
at a time, with a time step between each. When processing
a line, an iteration over each particle finds the nearest point
on that line, calculates the image intensity contribution from
that point, and then repeats this process, moving away from
the starting point until the contribution from that particle falls
below the image granularity.

Figure 1. Overview of system: A) A schematic diagram of the “moss
geometry” used for simulations. A slice is taken and expanded in B, showing
the effect of the laser photobleaching particles. B) Zoomed in slice from
A, showing the focused Gaussian form of the laser beam. Particles outside
the beam are unaffected, while particles inside the beam are stochastically
bleached depending on the intensity they experience. C) A computationally
produced image of the entire moss geometry. With sufficient particles, it
is impossible to distinguish a single particle. The highlighted area has a
hole, from a single point of laser bleaching. D) Due to the properties of
the laser beam, the effects of the photobleaching beam are well confined in
both horizontal and vertical axes.

C. Modeling Photobleaching

We assume that the photobleaching laser is also a Gaussian
beam, with a much higher power (See Fig. 1). We also assume
that the probability of a given fluorescent particle bleaching is
directly proportional to the intensity of the light it experiences.
Since bleaching, like imaging, is accomplished by rastering
across the bleach region in a finite time, we treat the bleaching
of a single region as a set of discrete line-bleach events
at different times. For efficiency reasons, we convolve the
Gaussian beam along the bleach line, giving a single functional
form describing the line-bleach-event.

III. GPU IMPLEMENTATION
A. Simulation overview

The whole simulation consists of three parts: initialization,
a main loop and finalization. Before we can compute anything,
initial values of variables must be generated and memory space
must be allocated both on the CPU and GPU. The main loop is
where the actual simulation takes place. During each iteration,
the particles are moved, and (if the descriptors require it)
photobleached or imaged. The finalization part is relatively
simple. No special operations are needed and the only thing
necessary is to free the allocated memory. Fig. 2 shows the
structure and code flow of the whole simulation.

B. Initializing the simulation

We initialize the particles with a CPU function because
its execution time is negligible when compared to the whole
simulation. The data is then copied to GPU memory and stays
there for the rest of the simulation to avoid expensive data
transfer time between CPU and GPU. The FRAP descriptors
and image descriptors are also initialized on the CPU for
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Figure 2. Simulation overview.

similar reasons. We use a GPU kernel to initialize the GPU
seeds for random number generating functions so that each
thread has its own unique seed. GPU memory space for
other data is also allocated, such as image descriptors and
images. However, these are not immediately transferred; they
will be transferred on demand. FRAP descriptors are used as
control variables in CPU functions and are not need in GPU
execution. Image descriptors are used in GPU kernels but they
are transferred during the imaging kernel step. Fig. 3 shows
the data transfer and memory allocation in initialization.

C. GPU kernels

There are three GPU kernel functions in our main loop:
Brownian Dynamics kernel, FRAP kernel and Imaging kernel.
GPU kernel functions are launched by the CPU and executed
by the GPU. Certain CPU functions are used for controlling
the code flow and kernel launches.

The Brownian Dynamics kernel is launched every time step
in the main loop. It runs with one thread per particle and each
thread calls two device functions. The first device function
updates the pseudo-velocity of each particle, while the second
moves the particle, updates its position, and checks for any
collisions with walls. It may be called multiple times inside a
while loop.

The FRAP kernel runs with one thread per particle. The
FRAP descriptors control the launches of the FRAP kernel in
a CPU function. When a descriptor calls for a FRAP event
to happen, it passes the appropriate parameters to the FRAP
kernel, which updates the particles on GPU without a formal
memory copy.

The imaging kernel runs with one thread per particle. The
image descriptors control the launches of the imaging kernel
and are updated by the CPU function after each launch.
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Figure 3. Data transfer and memory allocation in initialization.

Allocation

Meanwhile, the imaging kernel needs to use the image de-
scriptors for computation. Therefore, data transfer is needed
every time before launching imaging kernel. This slows down
the program not only because of the data transfer itself but
also the synchronization before and after it. This can be further
optimized using the techniques that are explained in Section
IV. The imaging kernel sums up the contributions to the image
from every particle. In order to avoid race conditions, the
atomic add operation is used. Fig. 4 shows how FRAP kernel
and imaging kernel work.
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Figure 4. FRAP and imaging kernels

IV. GPU OPTIMIZATIONS

Since both a large part of our execution time and algorithmic
complexity is spent on the imaging part of the algorithm, we
focused on optimizing its performance.



A. Bucket Sort

While any given image line will only have contributions
from a relatively small portion of the total particles, it is
unknown which particles will contribute to a specific line.
This means that only a small fraction of the render threads
in a warp will go through their render loop, increasing branch
inefficiency. NVidia’s CUDA architecture runs warps of 32
threads in parallel, executing the same instruction simultane-
ously. When one thread has to take a branch, the other threads
must wait for it to finish, a process called warp divergence.

To avoid this problem, we would like to coalesce particles
to their relative locations, such that entire warps will either
all need to be rendered, or all skip rendering. We do this by
sorting the particles in order of their positions in the directions
perpendicular to imaging. We only need the particles to be
coalesced into approximate order however — a perfect ordering
is unnecessary and excessively time consuming. Thus, we use
a variant on the bucket sort where we skip the final sorting
step. This is implemented by first counting how many elements
will be in each bucket, which is then run through a cumulative
sum function to get a list of offsets for each bucket. Each
element can then be directly inserted into its new position
in the destination array, giving a coarse-grained sort in O(n)
time.

B. Asynchronous kernel execution in streams

An additional avenue of optimization is the minimization
of scheduling delays between kernel executions. This can
be mitigated by taking advantage of CUDA streams and
asynchronous operations [20]-[22].

For standard imaging, this was done by breaking the set
of particles into two sets. Since every particle is independent,
the GPU can start the second step on the first set of particles
before it finishes the first step on the second set. However,
this provides a minimal performance benefit as the GPU can
fully occupy itself with a single kernel launch. Additionally,
the GPU already has a very short kernel scheduling overhead,
and removing it accomplishes little. For the full z-stack
imaging, however, the optimization is both more simple and
effective. As a large number of imaging kernels will be run
in a single time step, they can be asynchronously queued in
independent streams, and only synchronize with the CPU when
the completed image is copied back to the host and written to
disk.

C. Floating point imaging

A final GPU-specific optimization was the use of single-
precision floating point math in the imaging routines. On the
CPU there is effectively no difference in speed between double
and single precision arithmetic, but on the GPU there is a large
difference. As experimental images are eight to twelve-bit,
single-precision floating point has enough accuracy to produce
comparable quality images, and so quality is not sacrificed
in this process. Thus, changing over all of the imaging math
to single precision had no ill effects, and gave a noticeable
speedup, as shown in the Tables V-A and V-B.

V. PERFORMANCE EVALUATION

We measure the computing performance using an NVidia
Geforce GTX 780 Ti graphics card for the various versions
of the GPU code, and compare it to the performance on an
Intel Xeon E5620 as a CPU baseline. The CPU baseline is
a well-optimized naive implementation on a single thread.
It is compiled with native CPU optimizations, for optimal
performance on the specific hardware on which is it executed.
The nature of the algorithm and its practical use means that
while it could be efficiently parallelized, there is little benefit
in comparison to simply executing multiple copies of the
software in parallel.

A. Experimental Time-series Simulation performance

Standard experimental simulation runs alternate between
movement and either a single photobleach or imaging step.
This means that all parts are of comparable import, and
optimizations such as the pre-imaging sort are less effective.

Benchmarks are done with 1,000,000 particles in a 20um
long cylinder capped with a 5um radius cylinder. The system
is photobleached twice, for a total of 512 lines, and imaged
in 160 images, each 256x106 pixels. Each photobleaching and
imaging line is done on a separate time-step.

Table T
EXECUTION TIME TO RUN AN EXPERIMENTAL TIME-SERIES JOB FOR
1,000,000 PARTICLES

Version Time (s)  Speedup  Speedup (cumulative)
CPU 10728.5

GPU (baseline) 1538.8 6.9 6.9
GPU (2D sorted, 64x128) 271.3 5.7 39.5
GPU (single precision) 179.9 1.5 59.6

B. Full z-stack performance

Because rendering a full z-stack for every desired time step
heavily skews the computational load towards the imaging
routine, the performance profile of the full z-stack render jobs
depends almost entirely on the imaging part. This means that
certain expensive optimizations (such as the sorting step) are
more effective.

Benchmarks are done using the most optimized GPU ver-
sion (floating-point imaging) with 1,000,000 particles in a
20pm long cylinder capped with a 5um radius cylinder. The
system is imaged in 106 images, each 256x106 pixels. All
imaging is done in a single time step.

The performance of the simulation depends on its parame-
ters. Fig. 5 and Fig. 6 show the effects of varying both the size
and horizontal to vertical ratio of the 2D sorting grid. These
show that a larger grid improves speed more than a small
grid, although the upper limit is due to hardware limitations.
In addition, as illustrated in Fig. 7, the efficiency increases as
the number of particles is increased.
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optimal grid size using the floating-point GPU version

Table II
EXECUTION TIME TO RUN A Z-STACK FOR 1,000,000 POINTS

Version Time (s) Speedup  Speedup (cumulative)
CPU 4229.6

GPU (baseline) 497.0 8.5

GPU (2D sorted: 64x128) 89.5 59 47.3
GPU (parallel imaging) 84.5 1.1 50.0
GPU (single precision) 41.7 2.0 101.4

VI. CONCLUSIONS

The computational power delivered by modern GPUs can be
effectively used to provide a cost-efficient way of doing large-
scale scientific simulation. We implement an experimentally
relevant simulation model, namely FRAP, using NVidia CUDA
and get a speed improvement of up to 100x over conventional
CPU-based methods. Finally, we demonstrate the pitfalls of
warp divergence and the benefits of using single-precision over
double-precision floating point arithmetic, as well as additional
techniques by which independently parallel GPU algorithms
can be improved. While our model implements the specifics
of our experimental system — moss tip cells in a confocal
microscope — our approach can be easily generalized to other
complex cellular geometries and experimental setups.
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