
GPGPU Parallelization of Self-Calibrating
Agent-Based Influenza Outbreak Simulation

Peter Holvenstot
College of Eng. and Applied Sciences

Western Michigan University
Kalamazoo, MI 49008–5466

Email: peter.holvenstot@gmail.com

Professor Diana Prieto
College of Eng. and Applied Sciences

Western Michigan University
Kalamazoo, MI 49008–5466

Email: diana.prieto@wmich.edu

Professor Elise de Doncker
College of Eng. and Applied Sciences

Western Michigan University
Kalamazoo, MI 49008–5466

Email: elise.dedoncker@wmich.edu

Abstract—Agent-based simulations of influenza spread are
useful for decision making during public health emergencies.
During such emergencies, decisions are required in cycles of less
than day, and agent-based models should be adapted to support
such decisions. The most important considerations for model
adaptation are fast calibration of the model, low computational
complexity as the population size is scaled up, and dependability
of the results with low replication quantity. In previous work,
we presented a self-calibrating model for agent-based influenza
simulations. We now investigate whether general-purpose GPU
computation is effective at accelerating the processing of this
model to support health policy decision-making for pandemic and
seasonal strains of the virus. The results of this paper indicate
that a speedup of 94.3x is obtained with GPU algorithms for
simulation sizes of 50 million people. Our GPU implementation
scales linearly in the number of people which makes it a good
choice for real-time decision support.

I. INTRODUCTION

There is a need for informative simulations to support
health policy decision-making during emergent disease out-
breaks. Severe outbreaks may require a policy response from
public health officials, and models have proven to be useful to
project the effects of proposed policies [1], [4].

Several models have been proposed for influenza deci-
sion support. Diffusion-based models offer rapid processing
times by coarsening the granularity of the simulation. These
models assign individuals into compartments, where in each
compartment every individual makes the same number of
contacts and a contact can be any individual in the com-
partment [2]. These simulations may be run quickly, but
are less informative because they do not model individual
behavior. Agent-based simulations model the spread of the
disease through interactions between specific individuals in
the contact network which allows greater ability to model
individual behavior and complex mitigation strategies. Agent-
based simulation are computationally expensive as they require
a complex calibration process in which its parameters are
adjusted to field observation data. Their computational burden
grows as the population in the outbreak increases, and due
to the stochastic nature of these simulations, many replicates
must be run in order to ensure statistical confidence of the
results.

As the spread of the disease increases, effective response
becomes more difficult and models must provide statistically

confident results as quickly as possible. Due to their com-
putation cost, agent-based models are yet to be adapted to
support operational decisions that generally occur in cycles of
less than 4 to 6 hours [2], [3]. This implies several design
considerations: 1) Models should be calibrated as fast as
possible. In addition, 2) models need to run extremely fast,
even with the increasing size of an outbreak. And 3) models
should be replicated quickly.

In previous work, we have addressed consideration 1) by
presenting an agent based model which uses observed epidemi-
ological information to calibrate simulation parameters [5]. In
this paper, we address considerations 2) and 3) by presenting
a GPU accelerated version of our model and investigating its
performance under different GPU environments and outbreak
sizes. We also discuss whether our simulation is a good
candidate for parallelization using GPUs.

Several approaches have been proposed for accelerating
general purpose simulations of influenza outbreaks. DiCon
[6], ABM++ [7], and FluTE [8] are examples of MPI im-
plementations using CPUs. The software presented in [9] is
an example CPU/GPU hybrid approach. Our approach differs
because it is implemented entirely in the GPU memory of
a single device, which offers a greater speedup. Our paper
contributes a modeling framework capable of supporting rapid
decisionmaking cycles during influenza emergencies.

In this paper, we investigate whether this model may be
effectively accelerated by parallel algorithms using GPUs.
Section II describes the operation of the self-calibrating agent-
based model. Section III describes the features and limitations
of the GPU architecture. Section IV describes our GPU imple-
mentation. Section V describes the performance of our model
across different simulation configurations and hardware.

II. DESCRIPTION OF SIMULATION

The simulation is an agent-based model of co-circulating
influenza strains which incorporates a self-calibrating repro-
duction number. In the model, agents transition independently
between Susceptible, Infected, and Recovered states. At ini-
tialization, all agents begin in the susceptible status. A small
random initial population of agents is selected to initiate the
outbreak. Agents with an infected status make contacts with
other agents, which represent possible opportunities for the
disease to spread. After a culmination period of 10 days, agents

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

transition to a recovered status. This status data is maintained
separately for both pandemic and seasonal strains of the virus.

Each agent is assigned a schedule which specifies its
location for each hour. At certain hours of the day, agents
with an active infection will randomly select other agents at
their present location as possible infection contacts. At the end
of each day, these contacts are processed and infections may
occur.

For each strain, a basic reproduction number is given as an
input parameter. This represents the average number of further
infections that an infected person will generate throughout their
period of infectiousness, assuming that the entire population
is susceptible. Another parameter given is viral shedding,
which is used as a proxy for infectiousness. Carrat et al
provide measurements of viral shedding occurring on each
day between infection and recovery [10], and we express
these daily values as a fraction of the total viral shedding
throughout this period. This value is used to distribute the
expected number of infections given by the basic reproduction
number throughout the period of infectiousness, yielding an
expected number of infections for each day [5].

The expected daily reproduction number is further dis-
tributed through the daily contacts of an infected case, which
have been selected from the simulation. This yields a proba-
bility of successful transmission to each contact.

After the simulation has run for a specified number of days,
a reproduction number is calculated for each generation of
each strain. The reproduction number R̂o for generation k is
calculated by the ratio between the number of infected cases
in the generation k + 1 and the number of infected cases in a
generation k. We conclude that the model is calibrated when
the basic reproduction number introduced to the simulation
is statistically similar to the maximum value of R̂o obtained
across all generations. This calibration approach has been
further tested and explored in [5].

A few optimizations are used in both the GPU implementa-
tion as well as the reference CPU implementation. Only hours
in which contacts will be made are generated and simulated.
As contacts are strictly unidirectional from the infector to
the victim, agents who do not have an active infection have
no chance of spreading disease and do not make contacts.
Workplaces and households remain constant throughout the
simulation, so these locations are generated once and reused
throughout the simulation.

III. GPU ARCHITECTURE

GPUs are specialized processors which process data in
a highly parallel fashion. Originally designed to handle the
computational loads of graphics rendering, the advent of
general-purpose GPU computation languages such as CUDA
and OpenCL has allowed them to be applied to many other
algorithms. GPUs achieve high computational throughput by
using group of cores to perform the same operation on many
pieces of data. High-end devices offer thousands of cores, and
even low-end consumer devices often offer several hundred
cores. This extreme degree of parallelism does come at a cost,
and not all algorithms can be effectively accelerated on this
architecture.

GPU cores are controlled on several levels of granularity.
Cores are assigned to computational groups called blocks,
which can share on-chip memory to perform tasks coopera-
tively. Within a block, threads are controlled in smaller groups
called warps that execute instructions and memory accesses in
lockstep. Many blocks can be resident on a multiprocessor at
once, which allows cores to be used for other tasks in order
to hide the latency of global memory access. These blocks are
used in a larger group called a grid. Blocks and grids may be
1D, 2D, or three-dimensional and these dimensions may be
controlled by the user.

Memory usage is the most important design consideration
in the GPU implementation of this algorithm. CPUs are
frequently equipped with very large amounts of memory, on
the order of 128GB to 512GB or more. However, GPUs have
a very limited amount of onboard memory. Most commodity
desktop GPUs are equipped with only 1-2GB of memory,
and even very expensive GPGPU compute cards only have
5-12GB. Additionally, memory bandwidth is a critical limit in
algorithm performance. Thus, making efficient use of memory
is paramount in order to scale the simulation to large levels.

A variety of other factors make it difficult to reach full
memory utilization. If the GPU is used as a display device,
resources allocated to this task cannot also service the program.
Memory must be contiguous blocks, and fragmentation can
result from external sources or poor memory usage within
the program. Error-corrected memory is available on Tesla
compute cards, but causes a 10% overhead to store the correc-
tion codes. Many parallel implementations of sort algorithms
require additional auxiliary global memory as working space.

IV. GPU IMPLEMENTATION

We implemented the simulation using the CUDA frame-
work. Several portions of the CPU implementation were
changed to better fit GPU architecture. Moving individuals to
locations dominates the program runtime in both implemen-
tations, so this is a critical portion where good performance
must be achieved. In the CPU implementation, locations were
implemented as vectors in which personIDs were stored. With
a reasonable number of threads, this can be parallelized using
mutual-exclusion locks and other techniques. This approach
can be generally described as a number of cores working
independently to accomplish the task load. However, this ap-
proach is unsuitable for the GPU synchronization and memory
models.

Instead, the GPU implementation uses groups of threads
working together within a flat memory space. The task of
location generation is broken into two parts which can both be
parallelized effectively. First, a sort algorithm is used to sort
personID numbers, with the scheduled location number used as
a key. Each location is now represented as a contiguous region
of personIDs somewhere within a large array. A vectorized
lower-bound search is used to identify the array index of the
first person scheduled at a given location number, which is
referred to as the location offset. The offset of location l and
the offset of location l + 1 together define the bounds of the
region within the array.

Schedules are represented by a location ID and an hour
(where appropriate). The encoding of the schedule is found to

have a high impact on algorithm performance. In the initial im-
plementation, this was represented as a tuple (hour,locationID),
but this performed extremely poorly when sorting. Instead,
these are combined into a scheduleID value of (hour *
number locations) + location id that combines both pieces
of data. A scheduleID can be viewed as representing one
location at one hour. This approach provides greatly improved
performance and can be handled by any sort-by-key algorithm.

Initially some of the setup and the calculation of the
final outputs were implemented on the CPU. However, as
the runtime of the main algorithm improved this became a
significant factor in overall program runtime and necessitated
implementation on the GPU.

The final reproduction calculations are accomplished in a
manner similar to generating locations. All of the generation
numbers are sorted, and vectorized binary searches are used to
determine the number of people in each generation. This data
is then transferred to the CPU, where the final reproduction
values are calculated.

Where appropriate, simulation data is stored in device
constant memory. This is a fast in-processor data cache that
performs well when all threads in a warp attempt to access
the same memory location. This is useful for data such as
probability density functions.

A. Pseudo-Random Number Generator

As a stochastic simulation, this program consumes a large
amount of random numbers in order to generate schedules
and select contacts. This requires the use of a pseudorandom
number generator (PRNG) within the simulation. We elected
to use a counter-based PRNG due to several advantages
they offer, and we selected the Random123 library for our
implementation [11].

Stateful PRNGs generate outputs from an internal state
which is stored and permuted after each output generated.
Instead, CBPRNGs use encryption algorithms to generate
outputs. Rather than relying on internal state, a key is used
to encrypt a counter value into a random number, and each
counter value produces a different output. To put CBPRNGs
into the terminology of stateful PRNGs, the key is the seed,
and the counter value represents how many times the PRNG
has been called. However, rather than requiring N state permu-
tations for the Nth call, CBPRNGs always complete in O(1)
time.

This gives several advantages to stochastic agent-based
simulations. First, the algorithm parallelizes well. Since there
is no saved state, each call to the PRNG operates only on the
input parameters. There is no need to explicitly generate and
store a global or block-specific buffer of random numbers,
and there is no overhead from initializing and tearing down
PRNG states nor the need to store them in either processor-
shared memory during the run or global memory between runs.
RNG values are simply generated when entering a stochastic
portion of the algorithm. Since the PRNG algorithms are
highly computation-intensive, this offers an ideal opportunity
to hide memory latency and increase arithmetic intensity in
memory-bound portions of the algorithm.

The counter value can be chosen in ways that provide
additional advantages. In our simulation, the output value of a
PRNG generation is dependent on the position of the data item
being processed. If an algorithm requires C random numbers
per data item processed, the first counter input value for each
item can be expressed as
ctr = globalOffset + (dataIndex * C)
First, this means that the RNG stream for the program is
hardware-independent. Arbitrary numbers of cores can be
applied in any compute grid configuration, which allows
flexibility in tuning performance across varying hardware.

Additionally, the global offset value used to generate a
sequence of RNG numbers can be stored and used in later
parts of the algorithm. This can be used to re-generate ar-
bitrary sections of the RNG stream with low computational
complexity. This allows us to trade abundant processor power
for scarce global memory in certain situations.

B. Approaches

The implementation went through three distinct phases
with increasing scalability.

In the initial implementation, global memory was used
to store all data. Workplace, household, and errand contacts
were generated separately, and the contacts for each hour were
output sequentially into an array. At the end of the day, these
were sorted by infector, and processed into actions. A series of
operations filtered contacts whose target was not susceptible,
sorted them by target, and then removed duplicate actions. The
actions were then performed on the status arrays. However,
storing all the contacts used a very large amount of global
memory and the simulation could not be scaled very large.

Instead, to maximize performance and scalability our sec-
ond phase focused on avoiding the use of global memory for
the contacts array. Contacts are generated for each individual
for an entire day at once, and staged in shared memory during
the contact-making and processing phases. When a successful
infection attempt is made, the status of the target individual in
global memory is immediately updated using atomic compare-
and-swap operations. This can cause a data hazard if the target
is already infected with one strain of the virus and has not yet
been processed, as the day of their infection may be invalid.
Thus, some additional checking is required when processing
contacts. This approach offers much better scalability and
speedup than the previous.

The final phase focused on eliminating data stored about
infected individuals. The contact algorithm needs to know
at which locations an individual resides in order to select
contacts. This data would no longer be easily accessible after
sorting, so previous approaches copied this data out to a lookup
table for infected individuals.

While the algorithm must have this scheduling data, an
alternate approach is to reconstruct it instead of saving it. Since
the output of the PRNG is associated with the position of a
data item rather than a PRNG state, if the contact algorithm
knows the value of the global PRNG offset when the schedule
was generated then it can re-generate the PRNG output used
to assign a location for a particular individual. This results in
trading processor cycles for global memory.

read inputs()
for i=0 to num households do

assignHouseholdPopulation(i)
end for
allocate arrays()
for i=0 to num people do

assignAgeAndWorkplace(i)
end for
setupFixedLocations()

Fig. 1. Setup Algorithm

This re-generation approach cannot be used on household
locations because of the manner in which the simulation is
initialized. Simulation size is specified in terms of a number
of households, and the number of people in the simulation is
determined by assigning household populations according to a
PDF. However, another trick can be used when selecting con-
tacts from households. Since household numbers are assigned
sequentially and then personIDs are assigned based on this,
the ith index of the household people table is always equal to
i. This allows us an equal savings of memory in a different
area.

Taken together, these approaches yield an approximately
25% reduction in memory usage while having a nearly negli-
gible effect on simulation time.

C. Pseudocode

Our algorithm consists of a setup phase, a daily loop
that runs the simulation, and a final calculation phase. The
setup phase shown in Figure 1 loads the parameters of the
experiment and generates the population. Population size is
controlled by specifying the number of households that will
be generated, which is given as an input parameter. A PDF
is used to assign each household a type, which specifies
the number of adults and children in that household. Once
the population size of the simulation is known, the program
allocates the global memory arrays, and then assigns data to
each individual. Adults are assigned to a workplace according
to a PDF. Children are assigned a specific age, and this age
is used to randomly select an age-appropriate school as their
workplace. Since workplaces and households remain constant
throughout the simulation, these locations are treated as a
special case for scheduling. They are generated once and re-
used throughout the simulation.

The daily loop algorithm shown in Figure 2 controls the
state of the simulation. First, all population members are
iterated to transition agents who have reached culmination
from infected to recovered status. This same loop is used to
count the disease state of each agent for each strain, which
is used as an output. Schedule items are generated for each
agent, and then these are used as keys to sort the personIDs
by location. Finally, a selection algorithm is used to select
all individuals with an active infection. The contacts kernel
then handles the process of selecting contacts and transmitting
infection.

The contact selection and contact processing algorithms
take place within a kernel and contact data is stored in
shared memory. In the selection phase, each individual ran-
domly selects contacts from their scheduled locations/hours

countAndUpdateStatus()
assignSchedules()
generateLocations()
activeInfections[]← selectInfected()
for all myIdx in activeInfections do

selectContacts()
processContacts()

end for

Fig. 2. Daily Loop Algorithm

mySchedule[]← RecalculateSchedule(myIdx)
for i← 0 to contactsDesired do

myLoc← ArbitraryAlgorithm(mySchedule)
lowerBound← locOffsets[myLoc]
peopleAtLoc← locOffsets[myLoc+1] - lowerBound
if peopleAtLoc==1 then

contactKappa[i]← 0
else

personSelected← UnsignedRand() mod peopleAtLoc
contactTarget[i]← locationPeople[lowerBound+personSelected]
if contactTarget[i]==myIdx then

personSelected← (personSelected+1) mod peopleAtLoc
contactTarget[i]← locationPeople[lowerBound+personSelected]

end if
contactKappa[i]← ArbitraryAlgorithm()

end if
end for

Fig. 3. Contact Selection Algorithm

according to an arbitrary algorithm. Individuals may not select
themselves as contacts and if this occurs the next sequential
person at the location (with wraparound) is chosen instead.
Each contact is assigned an arbitrary kappa value representing
the relative opportunity for disease to spread. The algorithm
outputs an array of personID values selected as contacts and
an array of kappa values for the contact.

Figure 4 gives a simplified pseudocode for the process-
ing phase. Our implementation calculates separate infection
thresholds, yVals, and transmission success for both pandemic
and seasonal strains of the virus, but we have abbreviated
this due to space limitations. In the self-calibration step, the
kappa sum, base reproduction numbers, viral shedding profiles,
and individual epistemological data are used to calculate the
probability of a successful infection for a contact with a kappa
value of 1. This base probability is then modified by the kappa
value of each contact.

V. RESULTS

The GPU implementation was evaluated on several differ-
ent devices reflecting a variety of GPGPU-capable hardware.
The NVIDIA K20 is a high-end Tesla compute card targeted at

kappaSum← sum(contactKappa)
baseInfectionThreshold←calibrateInfector(kappaSum,day)
for i← 0 to contactsDesired do

contactInfectionThreshold←baseInfectionThreshold*contactKappa[i]
yVal← UnsignedRand() / UNSIGNED MAX
if yVal < contactInfectionThreshold then

transmitInfection(contactTarget[i])
end if

end for

Fig. 4. Contact Processing Algorithm

high-performance computing. The Nvidia GT640 is a modern
but low-end commodity desktop graphics card intended for
media PC usage. Finally the Quadro FX 880M is a relatively
old chipset used in workstation laptops. The program was
built with full compiler optimizations in each configuration.
The most important specifications when comparing the per-
formance of these devices is are the number of cores and
the memory bandwidth, which are given in Table I. The final
column of the table gives an approximate maximum population
scale value which can be supported on the device, as described
below.

To provide a comparison, we measured the performance of
a CPU implementation on a server using dual 8-core 2.6GHz
Xeon E5-2670 CPUs in Western Michigan University’s High
Performance Computational Science Laboratory. We provide
results for a single-threaded implementation as well as a multi-
threaded implementation using OpenMP. These implementa-
tions use the Mersenne Twister PRNG from the Boost.Random
library. In the OpenMP version, each thread uses its own
independent PRNG instance.

Table II shows the run-time of the single-threaded, multi-
threaded, and GPU implementations tested across different
hardware and simulation configurations. The first two columns
show the scale of the simulation. The baseline simulation
configuration (scale=1) uses approximately 2.5 million agents
(1 million household locations) and 12,800 workplace and
errand locations (per hour) with a simulation duration of 100
days. To demonstrate the implementation’s performance under
other simulation configurations, we allow the population and
the number of modeled locations to be independently scaled
from this baseline. For example, a population scale of 10
represents 10 million households (approximately 25 million
people) and an Location scale of 100 represents 1.28 million
locations. Values which have been struck out are the result of a
simulation configuration which is too large to fit in the device’s
memory. The runtime is given as an average computed across
10 iterations using different seed values.

Table III shows the speedup of the GPU and OpenMP
implementations relative to the single-threaded implementa-
tion. GPU speedup can be given as kernel speedup, which
describes the increase in performance of accelerated portions
of the program, and program speedup, which describes the
improvement in overall program time from accelerating certain
portions. As we have accelerated the entire simulation onboard
the GPU, our speedups for the GPU simulation reflect program
speedup. Profiler measures were not included as they were not
informative of the overall simulation performance. Sorting the
schedule items is the most intensive step of the simulation and
consumed a majority of the runtime.

The number of people in the simulation is the dominant
factor in the runtime. The CPU can complete small simulations
reasonably quickly. However, as the simulation is enlarged
its performance begins to degrade slightly. Within its limits
the GPU provides excellent performance and a speedup is
observed at all simulation sizes on all devices. The speedup of
the GPU implementation increases as the simulation is scaled
up until the memory limits of the device are reached. This be-
havior is likely due to fixed launch/synchronization overhead,
which is amortized across larger numbers of elements as the
simulation scale increases.

TABLE I. DEVICE SPECIFICATIONS

Device Cores Mem. Capacity Mem. Bandwidth Max Pscale

K20 2496 5GB 208GB/s 20

GT640 384 2GB 28.5GB/s 10

Q880M 48 1GB 25.3GB/s 5

TABLE II. RUNTIME COMPARISON

Sim Scale CPU Runtime (sec) GPU Runtime (sec)

People Locs 1 core 2 core 4 core 8 core 16 core K20 GT640 Q880M

0.1 0.1 4 4.3 3.1 2.6 2.7 0.22 0.88 2.62

0.1 1 4.7 4.7 3 2.3 2.3 0.23 0.9 2.69

1 1 47.7 47 28.9 21.8 20.6 1.25 5.91 24.1

1 10 61.7 51 30.8 23 21.8 1.32 6.25 25.07

5 5 301.5 244.3 144.8 105.9 99.9 5.86 28.62 124.6

5 50 454.3 279.5 161.7 116.2 109.4 6.23 30.13 128.6

10 10 681 506.9 293.5 212 199.9 11.65 57.21 X

10 100 1024.9 589.4 337.2 237.6 221.6 12.34 58.98 X

20 20 1550.5 1070.9 605.8 430.6 403.3 23.08 X X

20 200 2326.6 1254 715.3 492.5 452.3 24.66 X X

TABLE III. SPEEDUP

Sim Scale OpenMP Speedup GPU Speedup

People Locs 2-core 4-core 8-core 16-core K20 GT640 Q880M

0.1 0.1 0.93 1.29 1.53 1.48 18.18 4.54 1.53

0.1 1 1 1.56 2.04 2.04 20.43 5.22 1.74

1 1 1.01 1.65 2.19 2.32 38.16 8.07 1.98

1 10 1.21 2.0 2.68 2.83 46.74 9.87 2.46

5 5 1.23 2.08 2.84 3.01 51.45 10.53 2.42

5 50 1.62 2.81 3.91 4.15 72.92 15.08 3.53

10 10 1.34 2.32 3.21 3.41 58.45 11.90 X

10 100 1.73 3.04 4.31 4.63 83.06 17.38 X

20 20 1.45 2.56 3.6 3.84 67.18 X X

20 200 1.85 3.25 4.72 5.14 94.35 X X

VI. FUTURE WORK

A. Simulation Model

While this implementation is focused on accelerating an
existing simulation model, our work provides a generalized
framework for accelerating self-calibrating agent-based contact
models using a large number of individuals and locations. This
could be used to accelerate other simulation models with the
use of a more complex scheduling algorithm.

The current model considers all locations within a location
type to be equally probable destinations. This is a reasonable
assumption when simulation size is small, but within a larger
area individuals would be more likely to visit certain loca-
tions than others. One possible model could assign greater
probability to certain locations of a given type. This would
cause more individuals to be scheduled into those locations,
reflecting a difference in population density between urban and
rural areas.

A more complex model could assign additional data to
each individual which could be used in the scheduling process.
For example, a parameter representing the person’s geographic
location could be used to provide greater weight to locations
near to them. Similar data about individuals is already used by
the scheduling algorithm, for example to determine whether to
schedule an errand (adults) or an afterschool activity (children).

B. Simulation Performance

The runtime of the simulation might be further decreased
by using other sorting algorithms. Since the sort operation
used when generating locations consumes a large percentage
of the program runtime as well as a great deal of memory,
improvements to this part of the program have a large impact
on simulation runtime and size limits. GPU parallel sorting is
an area of active research and incorporating recent findings
will have direct performance benefits in a critical portion
of the algorithm. One possible approach would be to pre-
process the scheduling data in shared memory immediately
after generation. Since the re-generation approach allows the
schedule of an individual to be reconstructed, the locations of
infected individuals do not need to be explicitly stored. Rather
than writing the errand sequence directly into global memory
ordered according to the personID, the errands can be written
into shared memory and the block can pre-sort the errand
sequence into a tile. The tile can then be written into global
memory, where a mergesort could be used to sort the tiles.
This removes a complete round-trip to global memory, which
may offer performance advantages over a naive approach.

It may also be possible to make effective use of dynamic
parallelism and other features of recent GPU devices. For ex-
ample, it is still necessary to explicitly track which individuals
have an active infection. This requires iterating the status arrays
each day and consumes global memory. Simply scanning the
array and using contact methods on the active individuals
is likely not an efficient approach, because even during the
peak of an outbreak most individuals are not infected, and
during most of the simulation the overall percentage is very
low. This leads to a large number of idling threads, which is
not efficient. Instead, blocks could cooperatively locate which
individuals have active infections and launch additional kernels
to process them. This could offer benefits in both performance
and memory usage.

C. Simulation Scale

The simulation size may be increased somewhat further
by additional reductions in memory usage. In the location
generation step, all schedule items for all individuals are
sorted. Since radix sort requires O(N) auxiliary memory, this
consumes a large amount of memory at large simulation
sizes. Replacing radix-sort with an in-place sorting algorithm
would allow the simulation to be scaled further, although this
might result in slower performance in a critical portion of the
algorithm.

It would also be desirable to increase the size of the
simulation much further than incremental gains will allow.
While the maximum size of the simulation is limited by the
available GPU memory, multiple GPUs could be used in a
single machine or within a cluster. Each device is capable of
simulating a large population center, and with the addition of
an algorithm to control travel between these units national-
or international-scale simulations could be rapidly completed.
Low-end devices have an excellent cost-to-memory ratio and
the performance remains high, so these devices may be a cost-
effective approach to creating large simulations.

Another approach would be to shift the parts of the
program that are highly memory-intensive back to a CPU

implementation. The GPU could be utilized as a dedicated
coprocessor for generating schedules and sorting the location
arrays. These tasks are compute-intensive and could be ac-
complished efficiently by the GPU using a relatively small
amount of data, then transferred to the CPU for use in making
contacts. Very large simulations could be supported by splitting
these tasks into segments capable of fitting into GPU memory
and then merging the segments within host memory. Since the
GPU parallelization model is generally more restrictive than
CPUs, the CPU portions could easily be parallelized using an
arbitrary number of cores within a shared memory space.

VII. CONCLUSION

Our parallel GPU implementation provides substantially
greater speedups than a multi-threaded CPU implementation,
and can be scaled to support large simulations when executed
on both high-end GPGPU devices and commodity hardware.
Our agent-based influenza model is a good candidate for GPU
acceleration due to its high degree of parallelism. This allows
informative simulations to be completed rapidly to support
health policy decision-making during emergent outbreaks.

ACKNOWLEDGMENT

The authors would like to thank the Western Michigan Uni-
versity High-Performance Computational Science Laboratory,
established with support under NSF grant 1126438 and the
CUDA Teaching Center Grant from NVIDIA.

REFERENCES

[1] Interim pre-pandemic planning guidance: community strat-
egy for pandemic influenza mitigation in the united states.
http://www.pandemicflu.gov/plan/community/communitymitigation.pdf

[2] D. Prieto and T. Das and A. Savachkin and A. Uribe and R. Izurieta and
S. Malavade, A systematic review to identify areas of enhancements of pandemic
simulation models for operational use at provincial and local levels., BMC Public
Health, 2012, 12:251.

[3] Study to determine the requirements for an operational epidemiological modeling
process in support of decision making during disaster medical and public health re-
sponse operations, Tech. rep., Yale New Haven Center for Emergency Preparedness
and Disaster Response and US the Northern Command (2012)

[4] M. Tizzoni and P. Bajardi and C. Poletto and J. Ramasco and D. Balcan and
B. Gonalves and N. Perra and V. Colizza and A. Vespignani, Real-time numerical
forecast of global epidemic spreading: case study of 2009 A/H1N1pdm, BMC
Medicine, 2012, 10:165.

[5] D. Prieto and T. Das, An operational epidemiological model for calibrating agent-
based simulations of pandemic influenza outbreaks, Health Care Manag Sci. 2014
Apr 8. [Epub ahead of print].

[6] Dicon: Disease Control System [http://www.bio.utexas.edu/research/meyers/dicon/].
[7] MIDAS, ABM++ [https://mission.midas.psc.edu/].
[8] D. Chao and M. Halloran and V. Obenchain and I. Longini, FluTE, a publicly

available stochastic influenza epidemic simulation model, PLoS Comput Biol 2010,
6:1-8.

[9] K. Bisset and A. Aji and M. Marathe and W. Feng, High-performance biocomputing
for simulating the spread of contagion over large contact networks, BMC Genomics
2012, 13 (2):S3.

[10] F. Carrat and E. Vergu and N. Ferguson and M. Lemaitre and S. Cauchemez
and S. Leach and A. J. Valleron , Time Lines of Infection and Disease in Human
Influenza: A Review of Volunteer Challenge Studies, Am. Jnl of Epidemiology 2008,
7:775-785.

[11] Salmon, J. K. and Moraes, M. A., Random123: a Library of Counter-Based Ran-
dom Number Generators, [http://deshawresearch.com/resources random123.html].

