Industry-standard programming models for TI KeyStone II-based ARM + DSP SoCs

Ellen Blinka & Ajay Jayaraj
Texas Instruments
Agenda

• Multicore heterogeneous systems

• Brief overview of KeyStone II SoCs

• Software development philosophy for KeyStone II SoCs

• Tools for parallelization

• Tools for heterogeneous acceleration

• Tools for systems of multiple devices

• Software libraries
Continuous demand for increased processing

The need for multicore heterogeneous SoCs

- Market demand for increased processing performance, reduced power, and efficient use of board area

- Demand satisfied by **adding cores**
 - Mix of general purpose CPUs & accelerators (DSPs, GPUs, hardwired compute engines)

- Challenges:
 - How to efficiently segment tasks between compute engines
 - How to effectively and quickly program multiple cores of different types

Need to scale algorithms to fit available computing power.
The Solution: Programming Models

• Traditional approaches:
 – Manually partition workloads to individual cores
 – Optimize partitioned regions for the core
 – This offers high entitlement
 BUT
 – Partition must be redone for each system configuration
 – Not portable
 – Developer needs detailed knowledge of SoC architecture
 • Increased time to market

• Multicore Software Dev. Tools:
 – Modify code with pragmas and directives
 – Parallelization and load balancing are abstracted from the user
 – This offers high performance
 AND
 – Standard tools are portable to many architectures
 – SoC architecture details are abstracted from the developer
 – Data parallelization, task parallelization, accelerator offload, and more are all possible

TI enables industry-standard multicore software development tools on KeyStone II-based ARM + DSP SoCs
K2H Platform 66AK2H14/12/06 Functional Diagram

C66x Fixed or Floating Point DSP
- 4x/8x 66x DSP cores up to 1.4GHz
- 2x/4x Cotex ARM A15
- 1MB of local L2 cache RAM per C66 DSP core
- 4MB shared across all ARM

Large on chip and off chip memory
- Multicore Shared Memory Controller provides low latency & high bandwidth memory access
- 18MB (6MB Shared) L2 on-chip with ECC
- 2 x 72 bit DDR3, 72-bit (with ECC), 10GB total addressable, DIMM support (4 ranks total)

KeyStone multicore architecture and acceleration
- Multicore Navigator, TeraNet, HyperLink
- 1GbE Network coprocessor (IPv4/IPv6)
- Crypto Engine (IPSec, SRTP)

Peripherals
- 4 Port 1G Layer 2 Ethernet Switch
- 2x PCIe, 1x4 SRI0 2.1, EMIF16, USB 3.0 UARTx2, SPI, I2C
- 13-16W depending upon DSP cores, speed, temp & other factors

40mm x 40mm package
Software Development Philosophy

Multicore ARM®
- Mainline SMP Linux
- Standard Linux Tools Distributions
- MPI
- Augment with TI differentiation
- DSP Code Generation

Multicore DSP
- Leverage standard accelerator models
 - OpenCL
 - OpenMP Accelerator Model
- Extensive Tool box for advanced programmers
- OpenMP
- Libraries
- Navigator run-time
- RTOS & Drivers
- IPC
- And more…

Multicore ARM® + Multicore DSP

Development Environment:
- GDB, etc. Apps Debug Environment for ARM & DSP
- Eclipse “Embedded” Development & Debug Environment
- Instrumentation and Trace leveraging embedded hardware capability
Programming Models for KeyStone II

- ARM-callable APIs for DSP libraries
- OpenMP Accelerator Model
 - OpenCL + TI extensions to OpenCL *
- OpenMP (gcc)
- MPI
- ARM hosted DSP tools & debug
- SMP Linux
- OpenCL Multicore Libraries
 - FFTw, BLAS, others
- OpenCL + OpenMP Runtimes
- Open Event Machine, RTOS, bare metal
- Quad A15
- Navigator/Shared Memory
- 66AK2H SoC
- C66x DSPs (8)

* TI extensions enable OpenCL kernels to act as wrappers for C code with OpenMP regions

- A node is a 66AK2H SoC
- OpenMP Accelerator model or OpenCL for offloading computation from ARMs to DSPs on a single node
- MPI on ARM to communicate across nodes (multiple transports supported)
OpenMP for Shared Memory Parallel programming

- OpenMP available on ARM and DSP clusters
 - OpenMP supported in TI’s C66x compiler and runtime
 - Efficient, low overhead runtime for C66x cores using Multicore Navigator
 - OpenMP supported in standard GCC tooling

- Portable to any shared memory architecture
- Simple to modify existing single-threaded code
OpenCL for Heterogeneous Acceleration

- OpenCL: used to dispatch tasks from A15s to C66x DSP cores (host to accelerator)
- Multicore Navigator is used to dispatch workgroups and tasks across multiple DSP cores
- TI extension: allows OpenMP dispatch within OpenCL kernel

- Scalable and portable
- Existing OpenMP code integrated into heterogeneous SoC easily with dispatch from OpenCL kernel
- TI extension for OpenMP dispatch also reduces overhead by dispatching only one OpenCL task
OpenCL for Heterogeneous Acceleration

Data Parallel (NDRangeKernel)
- Kernel is enqueued
- OpenCL subdivides kernel into N workgroups (WG)
- Each WG operates independently on a core, WGs operate concurrently on all cores
- All WGs finish before another Kernel or Task is dispatched
- The host can run asynchronous to the kernel

Task Parallel (Task + Out-Of-Order Queue)
- Task is enqueued
- OpenCL dispatches task to one of the cores
- OpenCL can accept additional tasks and dispatch asynchronously
- The host can run asynchronous to the task

OpenMP dispatch through OpenCL (Task + In-Order Queue)
- TI Extension
- Task is enqueued
- OpenCL dispatches task to Core 0
- The task can then leverage other cores by entering OpenMP parallel region
- The host can run asynchronous to the task
- Lowers overhead from dispatching multiple tasks
- Easily integrate existing OpenMP code into heterogeneous environment
OpenMP Accelerator Model for Heterogeneous Acceleration

- Part of OpenMP 4.0 Standard, extends OpenMP to heterogeneous SoCs
- Enables dispatch of tasks from A15s to C66x DSPs (host to accelerator)
- Scalable and portable
- Existing code can be adapted quickly with very few additional lines
- OpenCL offers more control over memory management, data movement but OpenMP is a better fit for parallelizing regions
OpenMPI for Multiple Devices

- OpenMPI over Ethernet, SRIO or Hyperlink
 - SRIO and Hyperlink are TI-specific extensions to the byte transport layer of OpenMPI
 - Allows use of OpenMPI in architectures where SRIO is the backplane of choice
 - Hyperlink functionality:
 - Message passing between KeyStone-based SoCs

- OpenMPI implementation can pick the “fastest” transport available
 - Uses same API across multiple transports

- Standardized, portable APIs
- Large existing support ecosystem
 - Profilers, debuggers, training, etc.
Software Libraries

User view
- Embedded Linux running on the ARM
- Standard gcc tool chain
- Simply link to a TI provided library with an ARM callable API to accelerate applications using multiple ARM cores, DSP cores and processors as appropriate
- Use TI provided tools and examples to write new applications and libraries which use multiple ARM cores, DSP cores and processors to accelerate performance
- Includes BLAS and FFTW libraries

Using multiple cores on a single processor
- OpenMP for shared memory parallelization across ARM cores
- OpenCL or OpenMP Accelerator for heterogeneous acceleration with multiple DSP cores

Using multiple processors
- Open MPI over Ethernet, SRIO or Hyperlink
K2H Performance with OpenCL/OpenMP-DSP

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>ARM MPCore (4 Cortex-A15) Gflops</th>
<th>DSP (8 C66x) Gflops</th>
<th>Speedup</th>
<th>Notes</th>
</tr>
</thead>
</table>
| sgemm (single precision general matrix multiply) | 7.08 | 104.79 | 14.80 | • 4K x 4K matrix
• OpenCL used to dispatch to all DSP cores |
| dgemm (double precision general matrix multiply) | 5.97 | 26.99 | 4.52 | • 4K x 4K matrix
• OpenCL used to dispatch to one DSP core, OpenMP across DSP cores |
| FFTW 3.3.4 (www.fftw.org) | 1.21 (single core performance * 4) | 6.07 | 5.02 | • 1 D, double precision, complex to complex
• 1M points
• OpenCL used to dispatch to one DSP core, OpenMP across DSP cores |

K2H Board Configuration
- XTCEIVMK2X Rev 4.0
- MCSDK HPC 3.0.2
- C66x tools 8.0.0B2
- ARM gcc 4.7.2
- ARM cores clocked at 1.2 GHz
- DSP cores clocked at 1.228 GHz
- 8GB Memory, 6.5 for ARM/Linux, 1.5 for OpenCL

Benchmark Information
- **sgemm/dgemm**
 - ARM version tuned with ATLAS (Automatically Tuned Linear Algebra Software)
 - Scalar-matrix-matrix product and add the result to a scalar matrix product
 - \(C = \alpha A \cdot b + \beta C \)
Thank You

Questions?