Sampling Large Graphs for Anticipatory Analysis

Lauren Edwards*, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller

IEEE High Performance Extreme Computing Conference

September 16, 2015

This work is sponsored by the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Outline

• Introduction
• Sampling Techniques
• Link Prediction
• Experimental Setup
• Results
• Summary
Common Big Data Challenge

Rapidly increasing
- Data volume
- Data velocity
- Data variety
- Data veracity (security)

2000 2005 2010 2015 & Beyond

Data

Users

Operators

Analysts

Commanders

Data

Gap

OSINT Weather HUMINT C2 Ground Maritime Air Space Cyber
What is a Graph?

Graphs are mathematical representations of physical or logical relationships between sets of objects.

A graph is a pair of sets:
- A set of vertices/nodes (entities)
- A set of edges/links (connections, transactions, and relationships)
Applications of Graph Analytics

- **ISR**
 - Graphs represent entities and relationships detected through multiple data
 - ~1K – 1M entities and connections
 - GOAL: Identify anomalous patterns

- **Social**
 - Graphs represent relationships between individuals or documents
 - ~10K – 10M individuals and interactions
 - GOAL: Identify hidden social networks

- **Cyber**
 - Graphs represent communication patterns of computers on a network
 - ~1M – 1B network events
 - GOAL: Detect attack or malicious software

- **Bio**
 - Graphs represent connectivity between brain regions
 - ~1B – 1T regions and connections
 - GOAL: Detect regions affected by a neurological condition

Brain scale... 100 billion vertices, 100 trillion edges

2.08 mN A · bytes
2 (molar bytes) adjacency matrix
2.84 PB adjacency list
2.84 PB edge list

Human connectome. Gerhard et al., Frontiers in Neuroinformatics 5 (3), 2011

2 N A = 6.022 × 10^23 mol

Paul Burkhardt, Chris Waring

An NSA Big Graph experiment
Big Data Challenge

How can these massive graphs be leveraged to provide accurate anticipatory intelligence?

Outline

• Introduction
• Sampling Techniques
• Link Prediction
• Experimental Setup
• Results
• Summary
Methods for Sampling Graphs

Edge sampling methods
Consider each edge individually, keep it in the sample based on some criterion.

Vertex sampling methods
Sample individual vertices or local substructures.

Random walk methods
Walk from vertex to vertex by some criterion, keep edges along the path.

“Snowball” sampling methods
Start with a set of “seed” vertices, grow the sample from those.
Methods Used

- **Random Edge Sampling**
 - Each edge in the graph has equal probability of being included in the sample

- **Popularity-Based Sampling**
 - Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

- **Wedge Sampling**
 - Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
• Random Edge Sampling
 - Each edge in the graph has equal probability of being included in the sample

• Popularity-Based Sampling
 - Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

• Wedge Sampling
 - Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
Methods Used

• Random Edge Sampling
 – Each edge in the graph has equal probability of being included in the sample

• Popularity-Based Sampling
 – Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

• Wedge Sampling
 – Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
Methods Used

- Random Edge Sampling
 - Each edge in the graph has equal probability of being included in the sample

- Popularity-Based Sampling
 - Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

- Wedge Sampling
 - Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
Methods Used

- **Random Edge Sampling**
 - Each edge in the graph has equal probability of being included in the sample

- **Popularity-Based Sampling**
 - Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

- **Wedge Sampling**
 - Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
Methods Used

• Random Edge Sampling
 – Each edge in the graph has equal probability of being included in the sample

• Popularity-Based Sampling
 – Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

• Wedge Sampling
 – Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
Methods Used

• Random Edge Sampling
 – Each edge in the graph has equal probability of being included in the sample

• Popularity-Based Sampling
 – Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

• Wedge Sampling
 – Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
Methods Used

- **Random Edge Sampling**
 - Each edge in the graph has equal probability of being included in the sample

- **Popularity-Based Sampling**
 - Probability of sampling a given edge is proportional to a decreasing function of the vertex degrees

- **Wedge Sampling**
 - Choose a vertex at random, and randomly select two of its adjacent edges to be included in the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
Methods Used, Cont’d

• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
Methods Used, Cont’d

• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
Methods Used, Cont’d

• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
• Random Walk Sampling
 – Move along edges from vertex to vertex, adding edges to the sample along the way
 – At each step, with probability 0.15, jump to any vertex in the graph

• Random Area Sampling
 – Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
Random Walk Sampling
- Move along edges from vertex to vertex, adding edges to the sample along the way
- At each step, with probability 0.15, jump to any vertex in the graph

Random Area Sampling
- Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
Methods Used, Cont’d

- **Random Walk Sampling**
 - Move along edges from vertex to vertex, adding edges to the sample along the way
 - At each step, with probability 0.15, jump to any vertex in the graph

- **Random Area Sampling**
 - Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample
Random Walk Sampling
- Move along edges from vertex to vertex, adding edges to the sample along the way
- At each step, with probability 0.15, jump to any vertex in the graph

Random Area Sampling
- Choose a set of “seed” vertices, and add all edges adjacent to those vertices to the sample

Selected methods comprise a broad array of network sampling techniques
Outline

- Introduction
- Sampling Techniques
- Link Prediction
- Experimental Setup
- Results
- Summary
Link Prediction

- **Scenario:** Two vertices currently do not share an edge
- **Question:** How likely are these vertices to form a connection in the near future?
- **Examples:**
 - How likely is a connection to be formed between two people in a social network?
 - How likely are two political entities to engage in diplomatic or military conflict?

Link prediction: Anticipation of new connections that currently do not exist
Common neighbors
- Vertices with more neighbors in common are more likely to connect

Jaccard’s coefficient
- Normalize common neighbors by total number of neighbors

Low-rank approximation
- Use a low-rank approximation for the square of the adjacency matrix

Tensor decomposition
- Break data into vertex-vertex-time factors, extrapolate along temporal axis
If edge sampling probability is \(p \), probability of maintaining a common neighbor is \(p^2 \).

This “smears” the distribution of common neighbors, inhibiting detection.

For eigenvector-based techniques, removing edges causes the distribution of eigenvalues to contract.

The outlier eigenvalues, which provide the most information, contract more quickly.
Outline

• Introduction
• Sampling Techniques
• Link Prediction
• Experimental Setup
• Results
• Summary
Experiments

Simulated graph

- Method
 - Random edge
 - Popularity-based
 - Random walk
 - Random area
 - Wedge
 - Amount
 - Factor by which data size should be reduced

Sampling

Prediction statistics

Evaluation

- Prediction performance
- Running time
• BTER Model: Simulate graphs evolving over several time steps
• First time step: Create a graph from a generative model
• Future time steps:
 – Compute common neighbors
 Normalize using cosine similarity
 Randomly select based on scores
 – Create new random edges from generative model
 Simulates “chance” encounters
 – Randomly remove edges
Simulated Graphs

- Approximately 10,000 vertices, average degree of 17, 5% increase in edge count per time step
- Two degree distributions: one lighter tailed and one heavier tailed

![10k-Vertex Graph Degree Distributions](image)

Variations designed to determine most robust sampling methods
Performance Metrics

- **Area under the ROC curve (AUC)**
 - Measure area under the receiver operating characteristic (ROC) curve, which maps false alarm rate to detection rate

- **Running time**
 - Time required (in Matlab implementation) to compute prediction statistics

- **Memory Footprint**
 - Storage required for prediction statistics

Fundamental metrics for anticipatory network analytics:
- Predictive performance
- Latency
- Computing resource use

ROC shaded area = 0.144
AUC = 0.856
Outline

- Introduction
- Sampling Techniques
- Link Prediction
- Experimental Setup
- Results
- Summary
Link Prediction in Baseline Simulation

- Common neighbors and Jaccard’s coefficient are virtually identical.
- Random area sampling has the most significant initial performance drop in all cases.
- Random walk sampling improves AUC at a higher sampling factor with tensor factorization.
Time for Link Prediction

- Common neighbors and Jaccard: time is substantially reduced as sampling becomes more aggressive
- Best initial decrease is with random area sampling
 - However, this comes with the biggest decrease in predictive performance
• **Low Rank**: time increases with higher sampling rates
 – Changes in the distribution of eigenvalues alters convergence rate
• **Tensor**: High sampling rates significantly reduces runtime
• **Random area sampling** produces high number of isolated vertices, reduces the dimensionality of the adjacency matrix
Outline

• Introduction
• Sampling Techniques
• Link Prediction
• Experimental Setup
• Results
• Summary
Summary

• Network analytics are of tremendous importance for anticipatory analytics
 – Forecast future connections

• Networks of interest are often extremely large, and data sampling enables computation on a dataset of a reasonable size

• Study considered the effect of sampling on anticipatory network analytics
 – Random edge sampling is typically the most stable
 – Random area sampling loses performance the fastest

• Promising areas for future work: test on larger simulated and real graph data, investigate emergent community detection, aggregate samples for higher predictive capabilities, integration with high-performance graph analytics hardware