Graph analysis begins as an abstraction of a problem

Crossing the River Pregel
Determining if each of the Seven Bridges of Königsberg can be crossed exactly once depends only upon the connectivity of the endpoints...

Network of nodes and links
- Concise representation of unstructured data —
- transform *hairballs* into regular, structured format of binary relationships
- Facilitates powerful algorithmic approach to network analysis...
 - shortest-paths
 - centrality
 - clustering
Scaling problem

Analyzing graphs is hard...
- topology is irregular thus...
- difficult to leverage computer memory hierarchy increasing...
- latency and bandwidth costs and...
- high degree vertices cause hot-spots

At Big Data scales it gets harder...
- challenges of graph analysis are exacerbated as size increases
- graph data can be too big to fit in total memory...
- too big to save global state information...
- often lack of random access to vertices and edges
Conventional memory-bound computational approaches

SHARED-MEMORY

Parallel Random Access Machine (PRAM) data in globally-shared memory implicit communication by updating memory fast-random access

DISTRIBUTED-MEMORY

Bulk Synchronous Parallel (BSP) data distributed to local, private memory explicit communication by sending messages easier to scale by adding more machines
Physical limitations to memory-bounded approaches

SHARED-MEMORY
- Globally-shared memory limited by CPU addressing limit
- Top-end CPUs have 46-bit physical memory address space...
- therefore limited to **64 Terabytes** of globally-shared memory

DISTRIBUTED-MEMORY
- per machine memory limited by...
- number of CPU pins, memory controller channels, DIMMS per channel...
Poor data locality affects memory throughput...

QUESTION: What is the memory throughput if 90% TLB hit and 0.01% page fault on miss?

Effective memory access time

\[T_n = p_n l_n + (1 - p_n) T_{n-1} \]

Example

TLB = 20ns, RAM = 100ns, DISK = 10ms (10 × 10^6 ns)

\[
T_2 = p_2 l_2 + (1 - p_2)(p_1 l_1 + (1 - p_1) T_0) \\
= .9(\text{TLB}+\text{RAM}) + .1(.9999(\text{TLB}+2\text{RAM}) + .0001(\text{DISK})) \\
= .9(120\text{ns}) + .1(.9999(220\text{ns}) + 1000\text{ns}) = 230\text{ns}
\]

ANSWER:

33 MB/s
QUESTION: What is the memory throughput if 90% TLB hit and 0.01% page fault on miss?

Effective memory access time

\[T_n = p_n l_n + (1 - p_n) T_{n-1} \]

Example

TLB = 20ns, RAM = 100ns, DISK = 10ms (10 \times 10^6 ns)

\[
T_2 = p_2 l_2 + (1 - p_2) (p_1 l_1 + (1 - p_1) T_0) \\
= .9(TLB+RAM) + .1(.9999(TLB+2RAM) + .0001(DISK)) \\
= .9(120ns) + .1(.9999(220ns) + 1000ns) = 230ns
\]

ANSWER: 33 MB/s
QUESTION: What is the memory throughput if 90% TLB hit and 0.01% page fault on miss?

Effective memory access time

\[T_n = p_n l_n + (1 - p_n) T_{n-1} \]

Example

TLB = 20ns, RAM = 100ns, DISK = 10ms (10 × 10^6 ns)

\[
T_2 = p_2 l_2 + (1 - p_2)(p_1 l_1 + (1 - p_1) T_0) \\
= .9(\text{TLB+RAM}) + .1(.9999(\text{TLB+2RAM}) + .0001(\text{DISK})) \\
= .9(120ns) + .1(.9999(220ns) + 1000ns) = 230ns
\]

ANSWER: 33 MB/s

Sequential block read on disk...

About 100 MB/s...
Choosing a *Big Graph* data structure

Undirected graph data structure space complexity

$$\text{bytes} \times \begin{cases}
\Theta(n^2) & \text{adjacency matrix} \\
\Theta(n + 4m) & \text{sparse adjacency matrix (CSR format)} \\
\Theta(n + 4m) & \text{adjacency list} \\
\Theta(4m) & \text{edge list}
\end{cases}$$

Need compact structure that can be easily distributed...

- edge list representation wins but...
- no direct access to neighbors of a specific vertex... unless edges are sorted and indexed by groups
Applying Cloud technologies to *Big Graphs*

<table>
<thead>
<tr>
<th>Build a system with the following requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>- out-of-core computational paradigm — not memory-bound</td>
</tr>
<tr>
<td>- scalable, distributed (key, value) repository to store edge list</td>
</tr>
<tr>
<td>- using only commodity hardware</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Try the following Cloud technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Accumulo</td>
</tr>
<tr>
<td>- MapReduce</td>
</tr>
</tbody>
</table>
Extending BigTable

Google BigTable paper inspired a small group of NSA researchers to develop an implementation with cell-level security.

Apache Accumulo

Open-sourced in 2011 under the Apache Software Foundation.
Using Apache Accumulo for **Big Graphs**

Edge Table graph data structure

Using an Accumulo Table provides random access to edges!

- *Edge Table* is distributed into many *tablets*...
- each tablet has an index of its contents
- tablet contents are sorted by the *ROW ID*
- all values for a *ROW ID* coincide on the same tablet
- \((v, u)\) edges are stored in the *ROW ID* to permit large adjacencies to split across multiple tablets

Accumulo BatchScanner to access vertex adjacencies

- multi-threaded Accumulo iterator
- scan a batch of row identifiers
- scan multiple tablets concurrently

Apache Accumulo \(\langle \text{key, value} \rangle\) record

<table>
<thead>
<tr>
<th>ROW ID</th>
<th>COLUMN</th>
<th>TIMESTAMP</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAMILY</td>
<td>QUALIFIER</td>
<td>VISIBILITY</td>
</tr>
</tbody>
</table>
Using Apache MapReduce for **Big Graphs**

No longer memory-bound

Can process graphs that do not fit in memory!

Rethinking graph algorithms in MapReduce

- stateless – no history or globally-shared data
- scale-free memory – fixed working memory per task
- edge-centric – compute on pairwise information, e.g. endpoints of edges, paths...
- streaming – tasks do not re-read their input
- data-independent – no communication between tasks of the same phase

Implementation tips

- minimize number of rounds
- limit child JVM memory – number of concurrent tasks is limited by per machine RAM
- set IO buffers carefully to avoid spills (requires memory!)
- pick a good partitioner
- write raw comparators
- leverage compound keys
 - minimizes hot-spots by distributing on key
 - secondary-sort on compound keys is almost free
Random Access Machine algorithm (RAM)

This algorithm uses a graph data structure such as the *adjacency list* with \(O(1)\) access to the neighborhood \(N(v)\) of a vertex \(v\)

For \(n\) vertices and \(m\) edges, BFS takes \(O(n + m)\) time...

- \(O(n)\) access to all \(N(v)\)...
- \(O(m)\) tests for \(u \in N(v)\) for all \(v\) to avoid duplicate visits

\[
\sum_v d_v = 2m
\]

where \(d_v\) is the degree of a vertex \(v\)
BFS is hard on *Big Graphs*

BFS memory latency cost

Linear, $O(n + m)$, in computer memory references...

But n and m can be trillions for *Big Graphs*!
Rediscovery cycle

A vertex will be rediscovered within a cycle of at most length two due to symmetry.

Definition

The \(k + 1 \) step in BFS expands from the neighborhood of vertices at the \(k \)th step, then define the following:

- Let \(V_k \) be the set of frontier vertices at \(k \) step, and
- Let \(N_{k+1} = \bigcup_{v \in V_k} N(v) \) be the multiset of neighbors of the frontier.

Observation

Then it follows that \(V_k \) is the subset in \(N_k \) which have not been visited in the last two steps.

\[
V_k = (N_k \setminus V_{k-1}) \cap (N_k \setminus V_{k-2}) = N_k \setminus (V_{k-1} \cup V_{k-2})
\]
Reducing the k-level input to BFS

Minimizing state information

Only the last two frontier sets must be saved

\[V_k = N_k \setminus (V_{k-1} \cup V_{k-2}) \]

Sliding Window for BFS on undirected graphs

Employ a *sliding window* to minimize input at each \(k \) step
Terms and Definitions

For a simple, undirected graph $G = (V, E)$

- with $n = |V|$ vertices and $m = |E|$ edges where ...
- $N(v) = \{ u \in V \mid (v, u) \in E \}$ is the neighborhood of v
- $d_v = |N(v)|$ is the degree of v
- $d_{max} = \max\{d_v \mid v \in V\}$ is the maximum degree
- $d(u, v)$ is the distance, i.e. shortest-path, from u to v
- D_G is the diameter of G, i.e. longest shortest-path in G
- V_k is the frontier set of vertices at distance k from the source
- $N_k = \bigcup_{v \in V_{k-1}} N(v)$ is the multiset of neighbors of V_{k-1}
Our Cloud-based BFS

MapReduce algorithm

For each v with all k values equal, thus is a $v \in V_k$, create $\langle v, k \rangle$ and $\{ \langle u, k + 1 \rangle | u \in N(v), v \in V_k \}$

After each k step, keep only $\langle v, distance \rangle$ pairs from V_k, V_{k-1}, and N_{k+1} for the following $k + 1$ step.

Cloud-based BFS algorithm

Require: $K \leftarrow$ number of iterations
for $k = 0$ to K
do
set input to V_{k-1}, V_{k-2} and N_k
set output directory to V_k, N_{k+1}
Map: Identity
Reduce: input $\leftarrow \langle key, \{ values \} \rangle$
if every element in values is k then
for all v in adjacency(key) do
output $\langle v, k + 1 \rangle$ to N_{k+1} directory
end for
output $\langle key, k \rangle$ to V_k directory \{induced loop record\}
end if
end for

Adjacency computation

This algorithm uses a BatchScanner to scan the Edge Table for adjacencies from multiple vertices simultaneously... not shown here
Balance number of reduce tasks

The number of map tasks is set by input size but the reduce task count is user-defined...
- each map task sends to every reduce task – Cartesian product in communication costs!
- balance concurrency needs with available resources...

Automatically scale reduce count for BFS

- when input for reduce phase at each k-step is not known *a priori*...
- and cluster resources fluctuate...
- use the following *quick-and-dirty* scaling function...

\[R(x, f) = 1 + f((\log_{10} x)^3 + (\log_{10} x)^2) \]

\[r(x, f) = 1 + f((\log_{10} x)^3 + (\log_{10} x)^2) \]
Partition keys to align with tablets

- Sample distribution of content in the *Edge table*
 - Accumulo provides table splits
- Assign keys in round-robin to align with table splits...
- Minimizing the overlap of scans across all tablets
Validate approach with Graph500 Benchmark

Breadth-First Search (BFS) on an undirected R-MAT Graph

- count *Traversed Edges per Second* (TEPS)
- \(n = 2^{\text{scale}}, \ m = 16 \times n \)

<table>
<thead>
<tr>
<th>Class</th>
<th>Scale</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toy</td>
<td>26</td>
<td>17 GB</td>
</tr>
<tr>
<td>Mini</td>
<td>29</td>
<td>140 GB</td>
</tr>
<tr>
<td>Small</td>
<td>32</td>
<td>1 TB</td>
</tr>
<tr>
<td>Medium</td>
<td>36</td>
<td>17 TB</td>
</tr>
<tr>
<td>Large</td>
<td>39</td>
<td>140 TB</td>
</tr>
<tr>
<td>Huge</td>
<td>42</td>
<td>1.1 PB</td>
</tr>
</tbody>
</table>

Figure: Graph500 Problem Sizes
Largest Breadth-First Search on a Graph

BFS on 1 PB Graph with 70 trillion edges

- 150 million edges per second
- 19.5x more than cluster memory
- 16x larger problem than top competitor in Graph500 June 2012
- Linear performance from 1 trillion to 70 trillion edges...

Figure: Graph500 Scalability Benchmark

Presented at the CMU 2013 SDI Seminar series