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Abstract—Recent publications have considered the challenge of
movement in and out of the high bandwidth memory in attempt
to maximize GPU utilization and minimize overall application
wall time. This paper builds on previous contributions, [5] [17],
which simulate software models, advocated optimization, and
suggest design considerations. This contribution characterizes the
data movement innovations of the AC922 nodes IBM delivered
to Oak Ridge National Labs and Lawrence Livermore National
Labs as part of the 2014 Collaboration of Oak Ridge, Argonne,
and Livermore (CORAL) joint procurement activity. With a
single HPC system able to perform up to 200PF of processing
with access to 2.5PB of memory, this architecture motivates a
careful look at data movement. The AC922 POWER9 system
with NVIDIA V100 GPUs have cache line granularity, more
than double the bandwidth of PCIe Gen3, low latency interfaces
and are interconnected by dual-rail Mellanox CAPI/EDR HCAs.
As such, the bandwidth and latency assumptions from previous
simulations should be revisited and compared to characterization
results on product hardware. Our characterization approach
attempts to leverage existing performance approaches, as ap-
plicable, to ease comparison and correlation. The results show
that by refocusing our attention on the interconnect between
processing elements, it is possible to design efficient logically
coherent heterogeneous systems.

Index Terms—MPI, RDMA, Exascale, data sharing, on
demand paging, heterogeneous system coherence, POWER9,
NVLink, CORAL, CAPI, ATS, GPU Direct

I. INTRODUCTION

The data centric compute vision motivates the elimination or

minimization of data movement, enabling processing engines

to operate as close as possible to application data. While

it’s easy to see how this vision minimizes communication,

compute density optimization comes from pairing CPU and

GPU processing elements together with memories that suite

the purpose of each. It is highly desirable for programming

models to be unencumbered with managing data movement

and ultimately programs that do direct data copies are less

portable. Workflow analysis of traditional parallel program-

ming models and emerging cognitive workloads illustrated that

moving growing data sets dominate computation time either

from parallel file systems to main store or from main store to

PCIe attached accelerators.

In preparation for Exascale Systems, the CORAL systems

are a critical first step to demonstrate architecture scale and the

utility of several data movement innovations. The challenge to

scale to over 300PF systems coupled with a 24 MW energy

envelope led to a dense heterogeneous node design with CPU

and GPU processing elements associated with their respective

DRAM or high bandwidth memory (HBM2). Each processor

element creates a NUMA domain which in total encompasses

over > 2PB worth of total memory (see Table I for total

capacity).

TABLE I
CORAL SYSTEMS MEMORY SUMMARY

Lab Nodes Sockets DRAM (TB) GPUs HBM2 (TB)

ORNL 4607 9216 2,304 27648 432

LLNL 4320 8640 2,160 17280 270

Efficient programming models call for accessing system

memory with as little data replication as possible and

with low instruction overhead. The MPI community cited

several challenges with computing at this scale including

effective synchronization scaling with applications that would

otherwise benefit from One-Sided Communication and the

necessity of effective MPI Alltoall communication and has

considered new constructs to enable hybrid programming

[16]. In consideration of these, IBM’s CORAL proposal

included two principals that focused on data movement:

1) Minimize data motion

2) Enable compute across the system hierarchy

These principals resulted in hardware assisted data move-

ment innovations focused on reducing overhead and evolving

programming models towards a single global address. As a

result, the IBM AC922 design aimed at efficient RDMA trans-

fers targeting remote HBM2 and efficient coherent memory

transfers between the POWER9 CPU and NVIDIA V100 GPU

over NVLink 2.0 .

This contribution will be to benchmark data movement

innovations staying as close to industry methods and previous

contributions as possible. In cases where able, we demonstrate

results with the hardware features active and inactive.

II. RELATED WORK

In this section we concentrate on two macro areas: 1)

RDMA accesses between GPUs in different NUMA domains

and 2) CPU/GPU memory transfers. We reference existing

literature for treatment of these topics and then describe perti-

nent AC922 design features where description helps to explain
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our characterization approach. In [9], the AC922 architecture

is described with focus around the NVLink 2.0 including the

processor element configurations and associated bandwidths.

A. RDMA operations between GPUs

The ability to perform RDMA send/recv operations between

GPUs in different system nodes without the expense of making

intermediate copies to system memory has enabled scaling for

GPU workloads. As defined in [12], the features allowing data

movement among GPUs and between GPUs and other PCI

Express are defined as “GPU Direct”. System memory copies

and CPU overhead is avoided by copying the data directly

to/from from GPU memory. The Ohio State University team

behind the OSU benchmarks [4] demonstrate that this savings

reduces point-to-point communications times by between 2.5x

to 7x in [8] and also demonstrate up to 59% reduction in GPU

to GPU latency with “GPU Direct” in [14].

In the AC922 the Mellanox host channel adapter (HCA)

is attached directly to the POWER9 processor without going

through a PCIe switch. The GPU RDMA transfers, also bypass

CPU DRAM eliminating latency bottlenecks using Direct

Memory Access. Since GPU memory is used for RDMA,

efficient data transfer is achieved by avoid CPU overhead

and data replication. RDMA allows HCA DMA engines to

saturate IB link bandwidth. Data flow via RDMA cross the

NVLink bus to P9 PCIe Host Bridge (PHB) to the HCA.

POWER9’s NVLink Processing Unit (NPU) bridges the gap

between POWER9 internal bus and NVLink 2.0 and also

enabled the cache coherency protocol. The POWER9’s Mem-

ory Management Unit serves the CPU, GPU, and the PHBs

supporting Mellanox HCAs.

Fig. 1. P9 V100 RDMA Direct

The CORAL system design is interconnected with a dual-

rail Infiniband [2] EDR system fabric. The GPU RDMA

paths between HCAs travel this fabric and libraries design

to optimize transfers through the fabric. For CORAL, IBM

leveraged its Blue Gene/Q heritage with PAMI [11] [10]. The

PAMI library is able to make sure of Mellanox’s On Demand

paging as described in Section III-C. This CPU focused work

is then extended with the same MPI characterization approach

in describing lower latency collective processing in SHARP

[7]. From these works we borrow the approach of using

point to point communicaiton with MPI Send and MPI Recv,

MPI Alltoall, and MPI allreduce() analysis to characterize

latency, but limit the scope to focus on the path within the

compute node.

B. CPU/GPU Memory Transfers

Efficient data sharing is cited in [5] [17] as being expensive

in terms of performance due to the transfer size of current

paging mechanisms and the latency of page fault operations.

These works expose a cost 20µs and 50µs for the multiple

transfers required to service a page fault. The cost stems from

not using 57% of migrated cache blocks due to the access pat-

terns for applications commonly targeted for GPU processing

elements. Latency is addressed in [17] by simulating better

eviction policies with on demand prefetching and memory

oversubscription which are shown to increase the probability

of data being local when needed. A different approach lowers

transfer latency via a GPU architecture change to enabling

GPUs to manage page faults (verse the traditional method of

calling back to the runtime) is simulated in [5]. Both of these

contributions cited that if fine grained access could be achieved

with low latency, the data migration efficiency increases due

to less unused transfers and more time to effectively prefetch.

The implementation of cache line transfers between the

POWER9 and V100 certainly constitute fine grain sharing.

Using vector add kernel, daxpy, the AC922 design team

demonstrates 66.2 GB/s bandwidth (>99% efficiency) with

GPU resident kernels operating memory owned by the CPU

[9]. Also provided in [9] is detailed treatment of the CPU to

GPU bandwidths. The peak NVLink 2.0 bandwidth between

the CPU and GPUs are listed at 50 GB/s and 75 GB/s bi-

drectional depending on the 4 or 6 GPU configuration. This

bandwidth represents more than double the amount of band-

width assumed in previous work and the access granularity

built in the AC922 equals the lower bound previously assumed

for transfer granularity.

III. BACKGROUND: AC922 DATA MOVEMENT

The AC922 data movement features come in a few cate-

gories:

1) CPU to GPU communications described in [9]

2) Features implemented as part of OpenCAPI 3.0

3) Reductions in logical and physical data paths

Design elements involving CPU and GPU communications

are described in Section III-A and Section III-B. In Section

III-C we introduce design features for the OpenCAPI 3.0

standard and its application to On Demand Paging and PAMI.

A. Heterogeneous Coherent Memory

The AC922 implements 128B cache line coherency between

the POWER9 processor elements and the NVIDIA V100

(Volta) processing elements. This coherency comes with an
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instruction set of atomic operations and shared coherency

protocol. A shared address space is maintained in the operating

system that encapsulates the CPU’s memory (sysmem) and the

GPU’s memory (vidmem). These share a simply coherency

protocol containing only invalid and owned states. The GPU

reads system memory into its L1 cache (software managed)

and writes back through its L2 which then updates the system

coherency tables via the NVLink Processing Unit (NPU). The

GPUs keep track of lines loaned to the CPU in a hardware

table so that these can be efficiently pulled back when needed.

B. Low Latency GPU RDMAs

The NPU unit acts as a proxy to the system page table

and provides an Address Translation Sevvice (ATS). The

NPU accepts requests from the GPU, facilitates translation,

creates the request in the POWER9 Memory Management Unit

and maintains translations context for outstanding requests.

When the request is serviced, the hardware table is updated.

An undisclosed hardware algorithm selects the invalidation

routine. This mechanism is similar to what is described in [5]

but has the ability to deal with GPU faults without interaction

with the CUDA runtime.

C. On Demand Paging with CAPI ATS

CAPI attach IO [15] as implemented with the POWER9

ATS provides the following latency features:

1) A path from Infiniband to application memory that

eliminates kernel and device driver software overhead

(around 500 instructions verse 15000 instructions re-

quired for PCIe)

2) The ability to pin translations in the host ERAT (effec-

tive to real address translation table) and use an address

tag for subsequent references versus an effective address

3) Translate touch to prefetch address translation caches

4) Wake-up host thread, which allows a low latency mecha-

nism in lieu of either interrupts or host processor polling

mechanism of memory

5) Posted writes for improved streaming performance

Without CAPI/ATS, when a On Demand Page (ODP) packet

arrives the Mellanox HCA will try to fetch the real address

from an on-chip translation cache. If found in cache, it will

normally process the packet. If not in cache, then it will

interrupt the system and drop the packet. The IB driver

interrupt handler will use the kernel call get user pages to

do the translation and move that translation into cache. When

the packet is retransmitted, it will have real address available

and packet will be processed and acknowledged.

The path is almost the same with CAPI/ATS. However if

it has a cache miss, it will use the CAPI address translation

services to get the real address. This is targeted to service a

page in under 3 /mus, unless there is a page fault (in which

case there will also be an interrupt). With the current latency,

the packet could be serviced instead of getting dropped.

The impact of this would be seen with a program that

generates translation cache misses at the adapter level, but not

page faults and there has to be a large enough percentage

of these misses to make a performance difference. If the

application is linearly marching through memory, there may

not be enough translation misses to show a performance

difference.

IV. APPROACH

A. Hardware Coherent Memory

While it would seem logical to consider performance

counter equivalents to a miss status handling register (MSHR)

and track the misses as the cost of coherency [13], we take

a different approach postulating the bottleneck is the number

of wires on the NVLink thereby instead measuring the ability

to sustain full bandwidth traffic as the measure of successful

coherency directory design. In the AC922, this means the NPU

would need to have the resources required to keep the NVLink

saturated in both directions with coherent memory access as

demonstrated by Bordawekar et al [3]. For more coverage

of these mechanisms in conjunction with system atomics and

CUDA’s unified memory, we leverage the approach provided

in [5] and employ CHAI [6].

B. Low Latency RDMA

Using OSU benchmarks, which inculcates non-blocking

collectives, we intend to achieve overlap between computation

and communication. RDMA data transfers between GPUs and

other PCIe devices will be initiated thereby hiding CPU to

GPU bandwidth and latency bottlenecks. This will demonstrate

a significant improvement in MPI send and receive efficiency

between GPUs and other remote nodes. With OSU point-to-

point workloads we intend to show the data movement in

terms of latency using blocking MPI Send and MPI Recv

implementation and bandwidth measurements which should

reflect maximum sustained data transfer rate achieved using

non-blocking MPI Send and MPI Recv implementations.

C. CAPI ATS On Demand Paging

CAPI ATS and On Demand Paging performance will be

demonstrated using MPI application benchmark called AMG

(Algebraic MultiGrid Solver). AMG supports a large memory

footprint and is a proxy for sparse memory access pattern

workloads in CORAL. Running with and without CAPI ODP,

we will demonstrate paging effectiveness through better ex-

ecution times and understand this contributes to scale out

performance. Performance improvement for one-sided MPI

applications with CAPI ATS with no remote host involvement

will be justified using RDMA access support to entire host

address space.

V. EVALUATION

The experiments are performed on the IBM AC922 (8335-

GTW) equipped with a 2 POWER9 22-core processors running

at 3.45GHz, 256GB of memory, 6 NVIDIA V100 GPUs with

16GB of memory, and a Mellanox CX5 CAPI/EDR host bus

adaptor with 2 physical and 2 virtual links in the shared

bifurcated x16 slot. For the CAPI/ATS results in this paper, the

minimum level skiboot open firmware is 6.0.4 and the RHEL
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kernel version greater or equal to 4.14.0-49.9.1. The NVIDIA

V100 driver 396.37 driver was used with CUDA 9.2 runtime

libraries. Our fabric stack is built on Mellanox MLNX OFED

version 4.3-3.0.9.1.

A. RDMA Performance

The dataset shown in Figure 2 was created with the Infini-

band Verbs Performance Tests, perftest [1]. It shows compari-

son RDMA bandwidth for cases Host-to-Device, Host-to-Host,

Device-to-Device and Device-to-Host. GPUs are designated

as Device in this comparison. For all these cases discussed

below, RDMA is performed inter-nodes and confined to single

processor socket. These results peak at 11.8 GB/s (limited by

single EDR link) whereas the OSU Bandwidth Test results

peak at 12.3 GB/s (limited by PCIe Gen4 x8). In our eval-

uation, we found that both share the same shape, but due to

the buffering in the OSU test, tuning at the device driver level

is more straight forward with perftest. At this bandwidth, the

GPUDirect function is 90% the peak of PCI Gen4 bandwidth

and higher that what is previously published doing through

PCIe-based approach.With OSU benchmarks this increases to

93%.Further improvement is planned by increasing number of

DMA Read engines to reduce the GPU memory latency which

will produce bandwidth of 13.1 GB/s.

Fig. 2. RDMA Bandwidth Performance

The results of the RDMA based OSU latency tests are

shown in Figure 3. For smaller message sizes, GPU to GPU

latency is 7-8 µs as compared to Host-to-Host latency which

is 2 µs. GPU to GPU latency becomes comparable to Host-to-

Host for message size 64KB and above. These results show a

that the latency for small page size until 64KB is 17 µs for a

GPU initiated transfer to the host. As mentioned above, these

results are expected to improve with increase of DMA read

engines for GPU memory.

B. CHAI

The CHAI benchmarks are implemented in two versions, the

’D’ version uses traditional approaches such as double allo-

cation of buffers, explicit copies between devices, and kernel

launch/termination for synchronization [6]. The ’U’ version

Fig. 3. RDMA Latency Performance

employs unified virtual memory, relies on system coherency

and system atomics. With these, a general comparison can be

made.

For the evaluation with CHAI, we increased the default

number of warm-up runs to 10 and took the average of 100

runs. This was done somewhat arbitrary, but our initial results

were subject to OS jitter as many of those processes were

on the lower CPUs and these have affinity to GPU0 which

was the default target in the test. Note that note all the CHAI

tests ran correctly; the benchmark with created on a different

CPU/GPU architecture and some of the synchronization bar-

riers require some tuning for more general application. Due

to time constraints we focused on those working out without

modification. Luckily, this set includes at least one test from

each collaboration pattern.

The ’D’ and ’U’ results are represented in Figure 4 where

we chart the execution times as measured but the tooling of the

CHAI benchmark set. Since the allocation times were small,

generally less than 2% of the total, we summed these with

the any explicit copies and summed them into the category

of data movement (DM). The data is normalized to the ’D’

results to better illustrate the comparison between the two

implementations. The results shows that the ’U’ cases have

faster execution times largely due to the reduction in explicit

data movement. The kernel execution time in the ’U’ cases

is generally larger; we suspect that is because the kernels are

stalled at some points waiting for data.

The PAD testcase is interesting outlier. It was the only algo-

rithm that did better with explicit memory copies to and from

the GPU than relying on run-time to facilitate the CPU/GPU

copies. We took the liberty of adding a cudaMemAdvise

routine for the data array in the benchmark code and the

kernel time within a few usecs of the CUDA-D version. Since

the focus is on the underlying hardware functions, continued

with this change. Otherwise, the PAD kernel execution time

would have been 3x the CUDA-D version (larger than any

other benchmark in the suite).

VI. CONCLUSION

With the hardware support in the AC922, the measured

RDMA performance supports the most optimistic premise on
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Fig. 4. Evaluation of CHAI Workloads

software controlled page fault latency; a 4 KB page takes 17 µs

to complete where by the optimistic lower bound for software

control page fault resolution was 20 µs.

Using the CHAI benchmark, we have demonstrated that the

data movement features between the CPU and GPU in the

AC922 allow for naive data or task partitioning schemes to

perform comparable to fix partitioning. The allocation time

in previous reported results is significantly reduced on the

AC922 making the tests employing unified virtual memory,

coherence, and system atomics execution times faster than the

more traditional offload approaches.

The low latency RDMA results combined with reduction in

data movement in the CHAI benchmarks shows promise for

successful implementations of on-demand-paging and memory

prefetch algorithms to move data to the targeted compute

engines.

VII. FUTURE WORK

Results for workload level CAPI ATS evaluation with ODP

will be future work.
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